Question
Simplify the expression
xy2−2xyz+xz2−az3+3az2y−3azy2+ay3
Evaluate
x(y−z)2−a(z−y)3
Expand the expression
More Steps

Calculate
x(y−z)2
Simplify
x(y2−2yz+z2)
Apply the distributive property
xy2−x×2yz+xz2
Use the commutative property to reorder the terms
xy2−2xyz+xz2
xy2−2xyz+xz2−a(z−y)3
Solution
More Steps

Calculate
−a(z−y)3
Simplify
−a(z3−3z2y+3zy2−y3)
Apply the distributive property
−az3−(−a×3z2y)−a×3zy2−(−ay3)
Multiply the numbers
−az3−(−3az2y)−a×3zy2−(−ay3)
Multiply the numbers
−az3−(−3az2y)−3azy2−(−ay3)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−az3+3az2y−3azy2+ay3
xy2−2xyz+xz2−az3+3az2y−3azy2+ay3
Show Solution

Factor the expression
(z−y)2(x−az+ay)
Evaluate
x(y−z)2−a(z−y)3
Rewrite the expression
(z−y)2x−(z−y)2a(z−y)
Factor out (z−y)2 from the expression
(z−y)2(x−a(z−y))
Solution
(z−y)2(x−az+ay)
Show Solution
