Question
Simplify the expression
827x5a6−30x4a6−6x6a6+9x3a6
Evaluate
x(2x−1)(3−x)×2(x−1)(x2×1)(a3÷2)2×3÷4
Remove the parentheses
x(2x−1)(3−x)×2(x−1)x2×1×(a3÷2)2×3÷4
Rewrite the expression
x(2x−1)(3−x)×2(x−1)x2×1×(2a3)2×3÷4
Multiply the terms
More Steps

Multiply the terms
x(2x−1)(3−x)×2(x−1)x2×1×(2a3)2×3
Rewrite the expression
x(2x−1)(3−x)×2(x−1)x2(2a3)2×3
Multiply the terms with the same base by adding their exponents
x1+2(2x−1)(3−x)×2(x−1)(2a3)2×3
Add the numbers
x3(2x−1)(3−x)×2(x−1)(2a3)2×3
Multiply the terms
x3(2x−1)(3−x)×6(x−1)(2a3)2
Multiply the terms
More Steps

Evaluate
x3×6(2a3)2
Use the commutative property to reorder the terms
6x3(2a3)2
Rewrite the expression
6x3×4a6
Reduce the numbers
3x3×2a6
Multiply the terms
23x3a6
23x3a6(2x−1)(3−x)(x−1)
Multiply the first two terms
23x3a6(2x−1)(3−x)(x−1)
Multiply the first two terms
23x3a6(2x−1)(3−x)(x−1)
Multiply the terms
23x3a6(2x−1)(3−x)(x−1)
23x3a6(2x−1)(3−x)(x−1)÷4
Multiply by the reciprocal
23x3a6(2x−1)(3−x)(x−1)×41
Multiply the terms
2×43x3a6(2x−1)(3−x)(x−1)
Multiply the terms
83x3a6(2x−1)(3−x)(x−1)
Solution
More Steps

Evaluate
3x3a6(2x−1)(3−x)(x−1)
Multiply the terms
More Steps

Evaluate
3x3a6(2x−1)
Apply the distributive property
3x3a6×2x−3x3a6×1
Multiply the terms
6x4a6−3x3a6×1
Any expression multiplied by 1 remains the same
6x4a6−3x3a6
(6x4a6−3x3a6)(3−x)(x−1)
Multiply the terms
More Steps

Evaluate
(6x4a6−3x3a6)(3−x)
Apply the distributive property
6x4a6×3−6x4a6x−3x3a6×3−(−3x3a6x)
Multiply the numbers
18x4a6−6x4a6x−3x3a6×3−(−3x3a6x)
Multiply the terms
18x4a6−6x5a6−3x3a6×3−(−3x3a6x)
Multiply the numbers
18x4a6−6x5a6−9x3a6−(−3x3a6x)
Multiply the terms
18x4a6−6x5a6−9x3a6−(−3x4a6)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
18x4a6−6x5a6−9x3a6+3x4a6
Add the terms
21x4a6−6x5a6−9x3a6
(21x4a6−6x5a6−9x3a6)(x−1)
Apply the distributive property
21x4a6x−21x4a6×1−6x5a6x−(−6x5a6×1)−9x3a6x−(−9x3a6×1)
Multiply the terms
More Steps

Evaluate
x4×x
Use the product rule an×am=an+m to simplify the expression
x4+1
Add the numbers
x5
21x5a6−21x4a6×1−6x5a6x−(−6x5a6×1)−9x3a6x−(−9x3a6×1)
Any expression multiplied by 1 remains the same
21x5a6−21x4a6−6x5a6x−(−6x5a6×1)−9x3a6x−(−9x3a6×1)
Multiply the terms
More Steps

Evaluate
x5×x
Use the product rule an×am=an+m to simplify the expression
x5+1
Add the numbers
x6
21x5a6−21x4a6−6x6a6−(−6x5a6×1)−9x3a6x−(−9x3a6×1)
Any expression multiplied by 1 remains the same
21x5a6−21x4a6−6x6a6−(−6x5a6)−9x3a6x−(−9x3a6×1)
Multiply the terms
More Steps

Evaluate
x3×x
Use the product rule an×am=an+m to simplify the expression
x3+1
Add the numbers
x4
21x5a6−21x4a6−6x6a6−(−6x5a6)−9x4a6−(−9x3a6×1)
Any expression multiplied by 1 remains the same
21x5a6−21x4a6−6x6a6−(−6x5a6)−9x4a6−(−9x3a6)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
21x5a6−21x4a6−6x6a6+6x5a6−9x4a6+9x3a6
Add the terms
More Steps

Evaluate
21x5a6+6x5a6
Collect like terms by calculating the sum or difference of their coefficients
(21+6)x5a6
Add the numbers
27x5a6
27x5a6−21x4a6−6x6a6−9x4a6+9x3a6
Subtract the terms
More Steps

Evaluate
−21x4a6−9x4a6
Collect like terms by calculating the sum or difference of their coefficients
(−21−9)x4a6
Subtract the numbers
−30x4a6
27x5a6−30x4a6−6x6a6+9x3a6
827x5a6−30x4a6−6x6a6+9x3a6
Show Solution
