Question
Solve the inequality
x>−2.103803
Alternative Form
x∈(−2.103803,+∞)
Evaluate
x−51−(4×10x3)<1−(5×25x)
Multiply the terms
More Steps

Multiply the terms
4×10x3
Cancel out the common factor 2
2×5x3
Multiply the terms
52x3
x−51−52x3<1−(5×25x)
Multiply the terms
More Steps

Multiply the terms
5×25x
Cancel out the common factor 5
1×5x
Multiply the terms
5x
x−51−52x3<1−5x
Multiply both sides of the inequality by 5
(x−51−52x3)×5<(1−5x)×5
Multiply the terms
More Steps

Multiply the terms
(x−51−52x3)×5
Apply the distributive property
x×5−51×5−52x3×5
Reduce the fraction
x×5−1−2x3
Multiply the terms
5x−1−2x3
5x−1−2x3<(1−5x)×5
Multiply the terms
More Steps

Multiply the terms
(1−5x)×5
Apply the distributive property
1×5−5x×5
Reduce the fraction
1×5−x
Multiply the terms
5−x
5x−1−2x3<5−x
Move the expression to the left side
5x−1−2x3−(5−x)<0
Subtract the terms
More Steps

Evaluate
5x−1−2x3−(5−x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
5x−1−2x3−5+x
Add the terms
More Steps

Evaluate
5x+x
Collect like terms by calculating the sum or difference of their coefficients
(5+1)x
Add the numbers
6x
6x−1−2x3−5
Subtract the numbers
6x−6−2x3
6x−6−2x3<0
Rewrite the expression
6x−6−2x3=0
Factor the expression
2(3x−3−x3)=0
Divide both sides
3x−3−x3=0
Calculate
x≈−2.103803
Determine the test intervals using the critical values
x<−2.103803x>−2.103803
Choose a value form each interval
x1=−3x2=−1
To determine if x<−2.103803 is the solution to the inequality,test if the chosen value x=−3 satisfies the initial inequality
More Steps

Evaluate
5(−3)−1−2(−3)3<5−(−3)
Simplify
More Steps

Evaluate
5(−3)−1−2(−3)3
Multiply the numbers
−15−1−2(−3)3
Multiply the terms
−15−1+54
Calculate the sum or difference
38
38<5−(−3)
Subtract the terms
More Steps

Evaluate
5−(−3)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
5+3
Add the numbers
8
38<8
Check the inequality
false
x<−2.103803 is not a solutionx2=−1
To determine if x>−2.103803 is the solution to the inequality,test if the chosen value x=−1 satisfies the initial inequality
More Steps

Evaluate
5(−1)−1−2(−1)3<5−(−1)
Simplify
More Steps

Evaluate
5(−1)−1−2(−1)3
Simplify
−5−1−2(−1)3
Multiply the terms
−5−1+2
Calculate the sum or difference
−4
−4<5−(−1)
Subtract the terms
More Steps

Evaluate
5−(−1)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
5+1
Add the numbers
6
−4<6
Check the inequality
true
x<−2.103803 is not a solutionx>−2.103803 is the solution
Solution
x>−2.103803
Alternative Form
x∈(−2.103803,+∞)
Show Solution
