Question
Factor the expression
31(3x−4x2−225)
Evaluate
x−34x2−75
Solution
31(3x−4x2−225)
Show Solution

Find the roots
x1=83−83399i,x2=83+83399i
Alternative Form
x1≈0.375−7.490619i,x2≈0.375+7.490619i
Evaluate
x−34x2−75
To find the roots of the expression,set the expression equal to 0
x−34x2−75=0
Rewrite in standard form
−34x2+x−75=0
Multiply both sides
34x2−x+75=0
Multiply both sides
3(34x2−x+75)=3×0
Calculate
4x2−3x+225=0
Substitute a=4,b=−3 and c=225 into the quadratic formula x=2a−b±b2−4ac
x=2×43±(−3)2−4×4×225
Simplify the expression
x=83±(−3)2−4×4×225
Simplify the expression
More Steps

Evaluate
(−3)2−4×4×225
Multiply the terms
More Steps

Multiply the terms
4×4×225
Multiply the terms
16×225
Multiply the numbers
3600
(−3)2−3600
Rewrite the expression
32−3600
Evaluate the power
9−3600
Subtract the numbers
−3591
x=83±−3591
Simplify the radical expression
More Steps

Evaluate
−3591
Evaluate the power
3591×−1
Evaluate the power
3591×i
Evaluate the power
More Steps

Evaluate
3591
Write the expression as a product where the root of one of the factors can be evaluated
9×399
Write the number in exponential form with the base of 3
32×399
The root of a product is equal to the product of the roots of each factor
32×399
Reduce the index of the radical and exponent with 2
3399
3399×i
x=83±3399×i
Separate the equation into 2 possible cases
x=83+3399×ix=83−3399×i
Simplify the expression
x=83+83399ix=83−3399×i
Simplify the expression
x=83+83399ix=83−83399i
Solution
x1=83−83399i,x2=83+83399i
Alternative Form
x1≈0.375−7.490619i,x2≈0.375+7.490619i
Show Solution
