Question
Solve the equation
Solve for x
Solve for y
x=1−y33
Evaluate
x−y2xy=3
Multiply
More Steps

Evaluate
y2xy
Multiply the terms with the same base by adding their exponents
y2+1x
Add the numbers
y3x
x−y3x=3
Collect like terms by calculating the sum or difference of their coefficients
(1−y3)x=3
Divide both sides
1−y3(1−y3)x=1−y33
Solution
x=1−y33
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
x−y2xy=3
Multiply
More Steps

Evaluate
y2xy
Multiply the terms with the same base by adding their exponents
y2+1x
Add the numbers
y3x
x−y3x=3
To test if the graph of x−y3x=3 is symmetry with respect to the origin,substitute -x for x and -y for y
−x−(−y)3(−x)=3
Evaluate
More Steps

Evaluate
−x−(−y)3(−x)
Multiply the terms
More Steps

Evaluate
(−y)3(−x)
Rewrite the expression
−y3(−x)
Multiplying or dividing an even number of negative terms equals a positive
y3x
−x−y3x
−x−y3x=3
Solution
Not symmetry with respect to the origin
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=3xy21−y3
Calculate
x−y2xy=3
Simplify the expression
x−y3x=3
Take the derivative of both sides
dxd(x−y3x)=dxd(3)
Calculate the derivative
More Steps

Evaluate
dxd(x−y3x)
Use differentiation rules
dxd(x)+dxd(−y3x)
Use dxdxn=nxn−1 to find derivative
1+dxd(−y3x)
Evaluate the derivative
More Steps

Evaluate
dxd(−y3x)
Use differentiation rules
dxd(−x)×y3−x×dxd(y3)
Evaluate the derivative
−y3−x×dxd(y3)
Evaluate the derivative
−y3−3xy2dxdy
1−y3−3xy2dxdy
1−y3−3xy2dxdy=dxd(3)
Calculate the derivative
1−y3−3xy2dxdy=0
Move the expression to the right-hand side and change its sign
−3xy2dxdy=0−(1−y3)
Subtract the terms
More Steps

Evaluate
0−(1−y3)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
0−1+y3
Removing 0 doesn't change the value,so remove it from the expression
−1+y3
−3xy2dxdy=−1+y3
Divide both sides
−3xy2−3xy2dxdy=−3xy2−1+y3
Divide the numbers
dxdy=−3xy2−1+y3
Solution
More Steps

Evaluate
−3xy2−1+y3
Use b−a=−ba=−ba to rewrite the fraction
−3xy2−1+y3
Rewrite the expression
3xy21−y3
dxdy=3xy21−y3
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=9y5x2−2y3+4y6−2
Calculate
x−y2xy=3
Simplify the expression
x−y3x=3
Take the derivative of both sides
dxd(x−y3x)=dxd(3)
Calculate the derivative
More Steps

Evaluate
dxd(x−y3x)
Use differentiation rules
dxd(x)+dxd(−y3x)
Use dxdxn=nxn−1 to find derivative
1+dxd(−y3x)
Evaluate the derivative
More Steps

Evaluate
dxd(−y3x)
Use differentiation rules
dxd(−x)×y3−x×dxd(y3)
Evaluate the derivative
−y3−x×dxd(y3)
Evaluate the derivative
−y3−3xy2dxdy
1−y3−3xy2dxdy
1−y3−3xy2dxdy=dxd(3)
Calculate the derivative
1−y3−3xy2dxdy=0
Move the expression to the right-hand side and change its sign
−3xy2dxdy=0−(1−y3)
Subtract the terms
More Steps

Evaluate
0−(1−y3)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
0−1+y3
Removing 0 doesn't change the value,so remove it from the expression
−1+y3
−3xy2dxdy=−1+y3
Divide both sides
−3xy2−3xy2dxdy=−3xy2−1+y3
Divide the numbers
dxdy=−3xy2−1+y3
Divide the numbers
More Steps

Evaluate
−3xy2−1+y3
Use b−a=−ba=−ba to rewrite the fraction
−3xy2−1+y3
Rewrite the expression
3xy21−y3
dxdy=3xy21−y3
Take the derivative of both sides
dxd(dxdy)=dxd(3xy21−y3)
Calculate the derivative
dx2d2y=dxd(3xy21−y3)
Use differentiation rules
dx2d2y=(3xy2)2dxd(1−y3)×3xy2−(1−y3)×dxd(3xy2)
Calculate the derivative
More Steps

Evaluate
dxd(1−y3)
Use differentiation rules
dxd(1)+dxd(−y3)
Use dxd(c)=0 to find derivative
0+dxd(−y3)
Evaluate the derivative
0−3y2dxdy
Evaluate
−3y2dxdy
dx2d2y=(3xy2)2−3y2dxdy×3xy2−(1−y3)×dxd(3xy2)
Calculate the derivative
More Steps

Evaluate
dxd(3xy2)
Use differentiation rules
dxd(3)×xy2+3×dxd(x)×y2+3x×dxd(y2)
Use dxdxn=nxn−1 to find derivative
dxd(3)×xy2+3y2+3x×dxd(y2)
Evaluate the derivative
dxd(3)×xy2+3y2+6xydxdy
Calculate
3y2+6xydxdy
dx2d2y=(3xy2)2−3y2dxdy×3xy2−(1−y3)(3y2+6xydxdy)
Calculate
More Steps

Evaluate
−3y2dxdy×3xy2
Multiply the terms
−9y2dxdy×xy2
Multiply the terms
−9y4dxdy×x
dx2d2y=(3xy2)2−9y4dxdy×x−(1−y3)(3y2+6xydxdy)
Calculate
More Steps

Evaluate
(1−y3)(3y2+6xydxdy)
Use the the distributive property to expand the expression
(1−y3)×3y2+(1−y3)×6xydxdy
Multiply the terms
3y2−3y5+(1−y3)×6xydxdy
Multiply the terms
3y2−3y5+6xydxdy−6y4xdxdy
dx2d2y=(3xy2)2−9y4dxdy×x−(3y2−3y5+6xydxdy−6y4xdxdy)
Calculate
More Steps

Calculate
−9y4dxdy×x−(3y2−3y5+6xydxdy−6y4xdxdy)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−9y4dxdy×x−3y2+3y5−6xydxdy+6y4xdxdy
Use the commutative property to reorder the terms
−9y4xdxdy−3y2+3y5−6xydxdy+6y4xdxdy
Add the terms
−3y4xdxdy−3y2+3y5−6xydxdy
dx2d2y=(3xy2)2−3y4xdxdy−3y2+3y5−6xydxdy
Calculate
More Steps

Evaluate
(3xy2)2
Evaluate the power
32x2(y2)2
Evaluate the power
9x2(y2)2
Evaluate the power
9x2y4
dx2d2y=9x2y4−3y4xdxdy−3y2+3y5−6xydxdy
Calculate
dx2d2y=3x2y3−y3xdxdy−y+y4−2xdxdy
Use equation dxdy=3xy21−y3 to substitute
dx2d2y=3x2y3−y3x×3xy21−y3−y+y4−2x×3xy21−y3
Solution
More Steps

Calculate
3x2y3−y3x×3xy21−y3−y+y4−2x×3xy21−y3
Multiply the terms
3x2y3−3y(1−y3)−y+y4−2x×3xy21−y3
Multiply the terms
3x2y3−3y(1−y3)−y+y4−3y22(1−y3)
Calculate the sum or difference
More Steps

Evaluate
−3y(1−y3)−y+y4−3y22(1−y3)
Reduce fractions to a common denominator
−3y2y(1−y3)y2−3y2y×3y2+3y2y4×3y2−3y22(1−y3)
Write all numerators above the common denominator
3y2−y(1−y3)y2−y×3y2+y4×3y2−2(1−y3)
Multiply the terms
3y2−(y3−y6)−y×3y2+y4×3y2−2(1−y3)
Multiply the terms
3y2−(y3−y6)−3y3+y4×3y2−2(1−y3)
Multiply the terms
3y2−(y3−y6)−3y3+3y6−2(1−y3)
Multiply the terms
3y2−(y3−y6)−3y3+3y6−(2−2y3)
Calculate the sum or difference
3y2−2y3+4y6−2
3x2y33y2−2y3+4y6−2
Multiply by the reciprocal
3y2−2y3+4y6−2×3x2y31
Multiply the terms
3y2×3x2y3−2y3+4y6−2
Multiply the terms
More Steps

Evaluate
3y2×3x2y3
Multiply the numbers
9y2x2y3
Multiply the terms
9y5x2
9y5x2−2y3+4y6−2
dx2d2y=9y5x2−2y3+4y6−2
Show Solution
