Question
Simplify the expression
−4x4y2+24x3y2−36x2y2
Evaluate
xy2(x−3)×4x(3−x)
Multiply the terms
x2y2(x−3)×4(3−x)
Use the commutative property to reorder the terms
4x2y2(x−3)(3−x)
Multiply the terms
4x2y2(−(x−3)2)
Use the commutative property to reorder the terms
x2y2(−4)(x−3)2
Use the commutative property to reorder the terms
−4x2y2(x−3)2
Expand the expression
More Steps

Evaluate
(x−3)2
Use (a−b)2=a2−2ab+b2 to expand the expression
x2−2x×3+32
Calculate
x2−6x+9
−4x2y2(x2−6x+9)
Apply the distributive property
−4x2y2x2−(−4x2y2×6x)−4x2y2×9
Multiply the terms
More Steps

Evaluate
x2×x2
Use the product rule an×am=an+m to simplify the expression
x2+2
Add the numbers
x4
−4x4y2−(−4x2y2×6x)−4x2y2×9
Multiply the terms
More Steps

Evaluate
−4x2y2×6x
Multiply the numbers
−24x2y2x
Multiply the terms
More Steps

Evaluate
x2×x
Use the product rule an×am=an+m to simplify the expression
x2+1
Add the numbers
x3
−24x3y2
−4x4y2−(−24x3y2)−4x2y2×9
Multiply the numbers
−4x4y2−(−24x3y2)−36x2y2
Solution
−4x4y2+24x3y2−36x2y2
Show Solution
