Question
Solve the equation
x=y4−25y+1
Evaluate
xy2×y2−2x−5y−1=0
Multiply
More Steps

Evaluate
xy2×y2
Multiply the terms with the same base by adding their exponents
xy2+2
Add the numbers
xy4
xy4−2x−5y−1=0
Rewrite the expression
y4x−2x−5y−1=0
Collect like terms by calculating the sum or difference of their coefficients
(y4−2)x−5y−1=0
Move the constant to the right side
(y4−2)x=0+5y+1
Removing 0 doesn't change the value,so remove it from the expression
(y4−2)x=5y+1
Divide both sides
y4−2(y4−2)x=y4−25y+1
Solution
x=y4−25y+1
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
xy2×y2−2x−5y−1=0
Multiply
More Steps

Evaluate
xy2×y2
Multiply the terms with the same base by adding their exponents
xy2+2
Add the numbers
xy4
xy4−2x−5y−1=0
To test if the graph of xy4−2x−5y−1=0 is symmetry with respect to the origin,substitute -x for x and -y for y
−x(−y)4−2(−x)−5(−y)−1=0
Evaluate
More Steps

Evaluate
−x(−y)4−2(−x)−5(−y)−1
Multiply the terms
−xy4−2(−x)−5(−y)−1
Multiply the numbers
−xy4+2x−5(−y)−1
Multiply the numbers
−xy4+2x+5y−1
−xy4+2x+5y−1=0
Solution
Not symmetry with respect to the origin
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=4xy3−5−y4+2
Calculate
xy2y2−2x−5y−1=0
Simplify the expression
xy4−2x−5y−1=0
Take the derivative of both sides
dxd(xy4−2x−5y−1)=dxd(0)
Calculate the derivative
More Steps

Evaluate
dxd(xy4−2x−5y−1)
Use differentiation rules
dxd(xy4)+dxd(−2x)+dxd(−5y)+dxd(−1)
Evaluate the derivative
More Steps

Evaluate
dxd(xy4)
Use differentiation rules
dxd(x)×y4+x×dxd(y4)
Use dxdxn=nxn−1 to find derivative
y4+x×dxd(y4)
Evaluate the derivative
y4+4xy3dxdy
y4+4xy3dxdy+dxd(−2x)+dxd(−5y)+dxd(−1)
Evaluate the derivative
More Steps

Evaluate
dxd(−2x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
−2×dxd(x)
Use dxdxn=nxn−1 to find derivative
−2×1
Any expression multiplied by 1 remains the same
−2
y4+4xy3dxdy−2+dxd(−5y)+dxd(−1)
Evaluate the derivative
More Steps

Evaluate
dxd(−5y)
Use differentiation rules
dyd(−5y)×dxdy
Evaluate the derivative
−5dxdy
y4+4xy3dxdy−2−5dxdy+dxd(−1)
Use dxd(c)=0 to find derivative
y4+4xy3dxdy−2−5dxdy+0
Evaluate
y4+4xy3dxdy−2−5dxdy
y4+4xy3dxdy−2−5dxdy=dxd(0)
Calculate the derivative
y4+4xy3dxdy−2−5dxdy=0
Collect like terms by calculating the sum or difference of their coefficients
y4−2+(4xy3−5)dxdy=0
Move the constant to the right side
(4xy3−5)dxdy=0−(y4−2)
Subtract the terms
More Steps

Evaluate
0−(y4−2)
Removing 0 doesn't change the value,so remove it from the expression
−(y4−2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−y4+2
(4xy3−5)dxdy=−y4+2
Divide both sides
4xy3−5(4xy3−5)dxdy=4xy3−5−y4+2
Solution
dxdy=4xy3−5−y4+2
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=64x3y9−240x2y6+300xy3−12520y10x−16y6x−40y7+80y3−48xy2
Calculate
xy2y2−2x−5y−1=0
Simplify the expression
xy4−2x−5y−1=0
Take the derivative of both sides
dxd(xy4−2x−5y−1)=dxd(0)
Calculate the derivative
More Steps

Evaluate
dxd(xy4−2x−5y−1)
Use differentiation rules
dxd(xy4)+dxd(−2x)+dxd(−5y)+dxd(−1)
Evaluate the derivative
More Steps

Evaluate
dxd(xy4)
Use differentiation rules
dxd(x)×y4+x×dxd(y4)
Use dxdxn=nxn−1 to find derivative
y4+x×dxd(y4)
Evaluate the derivative
y4+4xy3dxdy
y4+4xy3dxdy+dxd(−2x)+dxd(−5y)+dxd(−1)
Evaluate the derivative
More Steps

Evaluate
dxd(−2x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
−2×dxd(x)
Use dxdxn=nxn−1 to find derivative
−2×1
Any expression multiplied by 1 remains the same
−2
y4+4xy3dxdy−2+dxd(−5y)+dxd(−1)
Evaluate the derivative
More Steps

Evaluate
dxd(−5y)
Use differentiation rules
dyd(−5y)×dxdy
Evaluate the derivative
−5dxdy
y4+4xy3dxdy−2−5dxdy+dxd(−1)
Use dxd(c)=0 to find derivative
y4+4xy3dxdy−2−5dxdy+0
Evaluate
y4+4xy3dxdy−2−5dxdy
y4+4xy3dxdy−2−5dxdy=dxd(0)
Calculate the derivative
y4+4xy3dxdy−2−5dxdy=0
Collect like terms by calculating the sum or difference of their coefficients
y4−2+(4xy3−5)dxdy=0
Move the constant to the right side
(4xy3−5)dxdy=0−(y4−2)
Subtract the terms
More Steps

Evaluate
0−(y4−2)
Removing 0 doesn't change the value,so remove it from the expression
−(y4−2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−y4+2
(4xy3−5)dxdy=−y4+2
Divide both sides
4xy3−5(4xy3−5)dxdy=4xy3−5−y4+2
Divide the numbers
dxdy=4xy3−5−y4+2
Take the derivative of both sides
dxd(dxdy)=dxd(4xy3−5−y4+2)
Calculate the derivative
dx2d2y=dxd(4xy3−5−y4+2)
Use differentiation rules
dx2d2y=(4xy3−5)2dxd(−y4+2)×(4xy3−5)−(−y4+2)×dxd(4xy3−5)
Calculate the derivative
More Steps

Evaluate
dxd(−y4+2)
Use differentiation rules
dxd(−y4)+dxd(2)
Evaluate the derivative
−4y3dxdy+dxd(2)
Use dxd(c)=0 to find derivative
−4y3dxdy+0
Evaluate
−4y3dxdy
dx2d2y=(4xy3−5)2−4y3dxdy×(4xy3−5)−(−y4+2)×dxd(4xy3−5)
Calculate the derivative
More Steps

Evaluate
dxd(4xy3−5)
Use differentiation rules
dxd(4xy3)+dxd(−5)
Evaluate the derivative
4y3+12xy2dxdy+dxd(−5)
Use dxd(c)=0 to find derivative
4y3+12xy2dxdy+0
Evaluate
4y3+12xy2dxdy
dx2d2y=(4xy3−5)2−4y3dxdy×(4xy3−5)−(−y4+2)(4y3+12xy2dxdy)
Calculate
More Steps

Evaluate
−4y3dxdy×(4xy3−5)
Apply the distributive property
−4y3dxdy×4xy3−(−4y3dxdy×5)
Multiply the terms
−16y6xdxdy−(−4y3dxdy×5)
Multiply the numbers
−16y6xdxdy−(−20y3dxdy)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−16y6xdxdy+20y3dxdy
dx2d2y=(4xy3−5)2−16y6xdxdy+20y3dxdy−(−y4+2)(4y3+12xy2dxdy)
Calculate
More Steps

Evaluate
(−y4+2)(4y3+12xy2dxdy)
Apply the distributive property
−y4×4y3−y4×12xy2dxdy+2×4y3+2×12xy2dxdy
Multiply the terms
−4y7−y4×12xy2dxdy+2×4y3+2×12xy2dxdy
Multiply the terms
−4y7−12y6xdxdy+2×4y3+2×12xy2dxdy
Multiply the numbers
−4y7−12y6xdxdy+8y3+2×12xy2dxdy
Multiply the numbers
−4y7−12y6xdxdy+8y3+24xy2dxdy
dx2d2y=(4xy3−5)2−16y6xdxdy+20y3dxdy−(−4y7−12y6xdxdy+8y3+24xy2dxdy)
Calculate
More Steps

Calculate
−16y6xdxdy+20y3dxdy−(−4y7−12y6xdxdy+8y3+24xy2dxdy)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−16y6xdxdy+20y3dxdy+4y7+12y6xdxdy−8y3−24xy2dxdy
Add the terms
−4y6xdxdy+20y3dxdy+4y7−8y3−24xy2dxdy
dx2d2y=(4xy3−5)2−4y6xdxdy+20y3dxdy+4y7−8y3−24xy2dxdy
Use equation dxdy=4xy3−5−y4+2 to substitute
dx2d2y=(4xy3−5)2−4y6x×4xy3−5−y4+2+20y3×4xy3−5−y4+2+4y7−8y3−24xy2×4xy3−5−y4+2
Solution
More Steps

Calculate
(4xy3−5)2−4y6x×4xy3−5−y4+2+20y3×4xy3−5−y4+2+4y7−8y3−24xy2×4xy3−5−y4+2
Multiply the terms
(4xy3−5)2−4xy3−54y6x(−y4+2)+20y3×4xy3−5−y4+2+4y7−8y3−24xy2×4xy3−5−y4+2
Multiply the terms
(4xy3−5)2−4xy3−54y6x(−y4+2)+4xy3−520y3(−y4+2)+4y7−8y3−24xy2×4xy3−5−y4+2
Multiply the terms
(4xy3−5)2−4xy3−54y6x(−y4+2)+4xy3−520y3(−y4+2)+4y7−8y3−4xy3−524xy2(−y4+2)
Calculate the sum or difference
More Steps

Evaluate
−4xy3−54y6x(−y4+2)+4xy3−520y3(−y4+2)+4y7−8y3−4xy3−524xy2(−y4+2)
Reduce fractions to a common denominator
−4xy3−54y6x(−y4+2)+4xy3−520y3(−y4+2)+4xy3−54y7(4xy3−5)−4xy3−58y3(4xy3−5)−4xy3−524xy2(−y4+2)
Write all numerators above the common denominator
4xy3−5−4y6x(−y4+2)+20y3(−y4+2)+4y7(4xy3−5)−8y3(4xy3−5)−24xy2(−y4+2)
Multiply the terms
4xy3−5−(−4y10x+8y6x)+20y3(−y4+2)+4y7(4xy3−5)−8y3(4xy3−5)−24xy2(−y4+2)
Multiply the terms
4xy3−5−(−4y10x+8y6x)−20y7+40y3+4y7(4xy3−5)−8y3(4xy3−5)−24xy2(−y4+2)
Multiply the terms
4xy3−5−(−4y10x+8y6x)−20y7+40y3+16xy10−20y7−8y3(4xy3−5)−24xy2(−y4+2)
Multiply the terms
4xy3−5−(−4y10x+8y6x)−20y7+40y3+16xy10−20y7−(32xy6−40y3)−24xy2(−y4+2)
Multiply the terms
4xy3−5−(−4y10x+8y6x)−20y7+40y3+16xy10−20y7−(32xy6−40y3)−(−24y6x+48xy2)
Calculate the sum or difference
4xy3−520y10x−16y6x−40y7+80y3−48xy2
(4xy3−5)24xy3−520y10x−16y6x−40y7+80y3−48xy2
Multiply by the reciprocal
4xy3−520y10x−16y6x−40y7+80y3−48xy2×(4xy3−5)21
Multiply the terms
(4xy3−5)(4xy3−5)220y10x−16y6x−40y7+80y3−48xy2
Multiply the terms
(4xy3−5)320y10x−16y6x−40y7+80y3−48xy2
Expand the expression
More Steps

Evaluate
(4xy3−5)3
Use (a−b)3=a3−3a2b+3ab2−b3 to expand the expression
(4xy3)3−3(4xy3)2×5+3×4xy3×52−53
Calculate
64x3y9−240x2y6+300xy3−125
64x3y9−240x2y6+300xy3−12520y10x−16y6x−40y7+80y3−48xy2
dx2d2y=64x3y9−240x2y6+300xy3−12520y10x−16y6x−40y7+80y3−48xy2
Show Solution
