Question
Function
Find the slope
Find the inverse
Evaluate the derivative
Load more

m=85
Evaluate
y=85x−810−1
Simplify
More Steps

Evaluate
85x−810−1
Cancel out the common factor 2
85x−45−1
Subtract the numbers
More Steps

Evaluate
−45−1
Reduce fractions to a common denominator
−45−44
Write all numerators above the common denominator
4−5−4
Subtract the numbers
4−9
Use b−a=−ba=−ba to rewrite the fraction
−49
85x−49
y=85x−49
Solution
m=85
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
y=85x−810−1
Simplify the expression
y=85x−49
To test if the graph of y=85x−49 is symmetry with respect to the origin,substitute -x for x and -y for y
−y=85(−x)−49
Multiplying or dividing an odd number of negative terms equals a negative
−y=−85x−49
Change the signs both sides
y=85x+49
Solution
Not symmetry with respect to the origin
Show Solution

Solve the equation
Solve for x
Solve for y
x=58y+18
Evaluate
y=85x−810−1
Simplify
More Steps

Evaluate
85x−810−1
Cancel out the common factor 2
85x−45−1
Subtract the numbers
More Steps

Evaluate
−45−1
Reduce fractions to a common denominator
−45−44
Write all numerators above the common denominator
4−5−4
Subtract the numbers
4−9
Use b−a=−ba=−ba to rewrite the fraction
−49
85x−49
y=85x−49
Swap the sides of the equation
85x−49=y
Move the constant to the right-hand side and change its sign
85x=y+49
Add the terms
More Steps

Evaluate
y+49
Reduce fractions to a common denominator
4y×4+49
Write all numerators above the common denominator
4y×4+9
Use the commutative property to reorder the terms
44y+9
85x=44y+9
Multiply by the reciprocal
85x×58=44y+9×58
Multiply
x=44y+9×58
Solution
More Steps

Evaluate
44y+9×58
Reduce the numbers
(4y+9)×52
Multiply the numbers
5(4y+9)×2
Multiply the numbers
More Steps

Evaluate
(4y+9)×2
Apply the distributive property
4y×2+9×2
Multiply the terms
8y+9×2
Multiply the numbers
8y+18
58y+18
x=58y+18
Show Solution

Rewrite the equation
r=−8sin(θ)−5cos(θ)18
Evaluate
y=85x−810−1
Simplify
More Steps

Evaluate
85x−810−1
Cancel out the common factor 2
85x−45−1
Subtract the numbers
More Steps

Evaluate
−45−1
Reduce fractions to a common denominator
−45−44
Write all numerators above the common denominator
4−5−4
Subtract the numbers
4−9
Use b−a=−ba=−ba to rewrite the fraction
−49
85x−49
y=85x−49
Multiply both sides of the equation by LCD
y×8=(85x−49)×8
Use the commutative property to reorder the terms
8y=(85x−49)×8
Simplify the equation
More Steps

Evaluate
(85x−49)×8
Apply the distributive property
85x×8−49×8
Simplify
5x−9×2
Multiply the numbers
5x−18
8y=5x−18
Move the expression to the left side
8y−5x=−18
To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ)
8sin(θ)×r−5cos(θ)×r=−18
Factor the expression
(8sin(θ)−5cos(θ))r=−18
Solution
r=−8sin(θ)−5cos(θ)18
Show Solution
