Question
Function
Evaluate the derivative
Find the domain
Find the x-intercept/zero
Load more

y′=⎩⎨⎧−3,x<−313,−31<x<0−3,0<x<313,x>31
Evaluate
y=∣3∣x∣−1∣
Take the derivative of both sides
y′=dxd(∣3∣x∣−1∣)
Solution
y′=⎩⎨⎧−3,x<−313,−31<x<0−3,0<x<313,x>31
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
y=∣3∣x∣−1∣
To test if the graph of y=∣3∣x∣−1∣ is symmetry with respect to the origin,substitute -x for x and -y for y
−y=∣3∣−x∣−1∣
Simplify
−y=∣3∣x∣−1∣
Change the signs both sides
y=−∣3∣x∣−1∣
Solution
Not symmetry with respect to the origin
Show Solution

Solve the equation
x∈(−∞,0)∩x=−31+y∪x∈(−∞,0)∩x=3−1+y∪x∈[0,+∞)∩x=31+y∪x∈[0,+∞)∩x=31−y
Evaluate
y=∣3∣x∣−1∣
Swap the sides of the equation
∣3∣x∣−1∣=y
Separate the equation into 2 possible cases
3∣x∣−1=y3∣x∣−1=−y
Solve the equation for x
More Steps

Evaluate
3∣x∣−1=y
Move the expression to the left side
3∣x∣−1−y=0
Separate the equation into 2 possible cases
3x−1−y=0,x≥03(−x)−1−y=0,x<0
Solve the equation
More Steps

Evaluate
3x−1−y=0
Move the expression to the right-hand side and change its sign
3x=0+1+y
Removing 0 doesn't change the value,so remove it from the expression
3x=1+y
Divide both sides
33x=31+y
Divide the numbers
x=31+y
x=31+y,x≥03(−x)−1−y=0,x<0
Solve the equation
More Steps

Evaluate
3(−x)−1−y=0
Calculate
−3x−1−y=0
Move the expression to the right-hand side and change its sign
−3x=0+1+y
Removing 0 doesn't change the value,so remove it from the expression
−3x=1+y
Change the signs on both sides of the equation
3x=−1−y
Divide both sides
33x=3−1−y
Divide the numbers
x=3−1−y
Use b−a=−ba=−ba to rewrite the fraction
x=−31+y
x=31+y,x≥0x=−31+y,x<0
Find the intersection
x∈[0,+∞)∩x=31+yx=−31+y,x<0
Find the intersection
x∈[0,+∞)∩x=31+yx∈(−∞,0)∩x=−31+y
Find the union
x∈(−∞,0)∩x=−31+y∪x∈[0,+∞)∩x=31+y
x∈(−∞,0)∩x=−31+y∪x∈[0,+∞)∩x=31+y3∣x∣−1=−y
Solve the equation for x
More Steps

Evaluate
3∣x∣−1=−y
Move the expression to the left side
3∣x∣−1−(−y)=0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
3∣x∣−1+y=0
Separate the equation into 2 possible cases
3x−1+y=0,x≥03(−x)−1+y=0,x<0
Solve the equation
More Steps

Evaluate
3x−1+y=0
Move the expression to the right-hand side and change its sign
3x=0−(−1+y)
Subtract the terms
3x=1−y
Divide both sides
33x=31−y
Divide the numbers
x=31−y
x=31−y,x≥03(−x)−1+y=0,x<0
Solve the equation
More Steps

Evaluate
3(−x)−1+y=0
Calculate
−3x−1+y=0
Move the expression to the right-hand side and change its sign
−3x=0−(−1+y)
Subtract the terms
−3x=1−y
Change the signs on both sides of the equation
3x=−1+y
Divide both sides
33x=3−1+y
Divide the numbers
x=3−1+y
x=31−y,x≥0x=3−1+y,x<0
Find the intersection
x∈[0,+∞)∩x=31−yx=3−1+y,x<0
Find the intersection
x∈[0,+∞)∩x=31−yx∈(−∞,0)∩x=3−1+y
Find the union
x∈(−∞,0)∩x=3−1+y∪x∈[0,+∞)∩x=31−y
x∈(−∞,0)∩x=−31+y∪x∈[0,+∞)∩x=31+yx∈(−∞,0)∩x=3−1+y∪x∈[0,+∞)∩x=31−y
Solution
x∈(−∞,0)∩x=−31+y∪x∈(−∞,0)∩x=3−1+y∪x∈[0,+∞)∩x=31+y∪x∈[0,+∞)∩x=31−y
Show Solution
