Question
Function
Find the vertex
Find the axis of symmetry
Rewrite in vertex form
Load more

(−7,129)
Evaluate
y=−3x2−42x−18
Find the x-coordinate of the vertex by substituting a=−3 and b=−42 into x = −2ab
x=−2(−3)−42
Solve the equation for x
x=−7
Find the y-coordinate of the vertex by evaluating the function for x=−7
y=−3(−7)2−42(−7)−18
Calculate
More Steps

Evaluate
−3(−7)2−42(−7)−18
Multiply the terms
More Steps

Evaluate
−3(−7)2
Evaluate the power
−3×49
Multiply the numbers
−147
−147−42(−7)−18
Multiply the numbers
More Steps

Evaluate
−42(−7)
Multiplying or dividing an even number of negative terms equals a positive
42×7
Multiply the numbers
294
−147+294−18
Calculate the sum or difference
129
y=129
Solution
(−7,129)
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
y=−3x2−42x−18
To test if the graph of y=−3x2−42x−18 is symmetry with respect to the origin,substitute -x for x and -y for y
−y=−3(−x)2−42(−x)−18
Simplify
More Steps

Evaluate
−3(−x)2−42(−x)−18
Multiply the terms
−3x2−42(−x)−18
Multiply the numbers
−3x2+42x−18
−y=−3x2+42x−18
Change the signs both sides
y=3x2−42x+18
Solution
Not symmetry with respect to the origin
Show Solution

Identify the conic
Find the standard equation of the parabola
Find the vertex of the parabola
Find the focus of the parabola
Load more

(x+7)2=−31(y−129)
Evaluate
y=−3x2−42x−18
Swap the sides of the equation
−3x2−42x−18=y
Move the constant to the right-hand side and change its sign
−3x2−42x=y−(−18)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−3x2−42x=y+18
Multiply both sides of the equation by −31
(−3x2−42x)(−31)=(y+18)(−31)
Multiply the terms
More Steps

Evaluate
(−3x2−42x)(−31)
Use the the distributive property to expand the expression
−3x2(−31)−42x(−31)
Multiply the numbers
x2−42x(−31)
Multiply the numbers
x2+14x
x2+14x=(y+18)(−31)
Multiply the terms
More Steps

Evaluate
(y+18)(−31)
Apply the distributive property
y(−31)+18(−31)
Use the commutative property to reorder the terms
−31y+18(−31)
Multiply the numbers
−31y−6
x2+14x=−31y−6
To complete the square, the same value needs to be added to both sides
x2+14x+49=−31y−6+49
Use a2+2ab+b2=(a+b)2 to factor the expression
(x+7)2=−31y−6+49
Add the numbers
(x+7)2=−31y+43
Solution
(x+7)2=−31(y−129)
Show Solution

Solve the equation
x=3−21+387−3yx=−321+387−3y
Evaluate
y=−3x2−42x−18
Swap the sides of the equation
−3x2−42x−18=y
Move the expression to the left side
−3x2−42x−18−y=0
Multiply both sides
3x2+42x+18+y=0
Substitute a=3,b=42 and c=18+y into the quadratic formula x=2a−b±b2−4ac
x=2×3−42±422−4×3(18+y)
Simplify the expression
x=6−42±422−4×3(18+y)
Simplify the expression
More Steps

Evaluate
422−4×3(18+y)
Multiply the terms
More Steps

Multiply the terms
4×3(18+y)
Multiply the terms
12(18+y)
Apply the distributive property
12×18+12y
Multiply the numbers
216+12y
422−(216+12y)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
422−216−12y
Evaluate the power
1764−216−12y
Subtract the numbers
1548−12y
x=6−42±1548−12y
Simplify the radical expression
More Steps

Evaluate
1548−12y
Factor the expression
12(129−y)
The root of a product is equal to the product of the roots of each factor
12×129−y
Evaluate the root
More Steps

Evaluate
12
Write the expression as a product where the root of one of the factors can be evaluated
4×3
Write the number in exponential form with the base of 2
22×3
The root of a product is equal to the product of the roots of each factor
22×3
Reduce the index of the radical and exponent with 2
23
23×129−y
Calculate the product
More Steps

Evaluate
3×129−y
The product of roots with the same index is equal to the root of the product
3(129−y)
Calculate the product
387−3y
2387−3y
x=6−42±2387−3y
Separate the equation into 2 possible cases
x=6−42+2387−3yx=6−42−2387−3y
Simplify the expression
More Steps

Evaluate
x=6−42+2387−3y
Divide the terms
More Steps

Evaluate
6−42+2387−3y
Rewrite the expression
62(−21+387−3y)
Cancel out the common factor 2
3−21+387−3y
x=3−21+387−3y
x=3−21+387−3yx=6−42−2387−3y
Solution
More Steps

Evaluate
x=6−42−2387−3y
Divide the terms
More Steps

Evaluate
6−42−2387−3y
Rewrite the expression
62(−21−387−3y)
Cancel out the common factor 2
3−21−387−3y
Use b−a=−ba=−ba to rewrite the fraction
−321+387−3y
x=−321+387−3y
x=3−21+387−3yx=−321+387−3y
Show Solution

Rewrite the equation
r=6cos2(θ)−sin(θ)−42cos(θ)+1+1547cos2(θ)+42sin(2θ)r=−6cos2(θ)sin(θ)+42cos(θ)+1+1547cos2(θ)+42sin(2θ)
Evaluate
y=−3x2−42x−18
Move the expression to the left side
y+3x2+42x=−18
To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ)
sin(θ)×r+3(cos(θ)×r)2+42cos(θ)×r=−18
Factor the expression
3cos2(θ)×r2+(sin(θ)+42cos(θ))r=−18
Subtract the terms
3cos2(θ)×r2+(sin(θ)+42cos(θ))r−(−18)=−18−(−18)
Evaluate
3cos2(θ)×r2+(sin(θ)+42cos(θ))r+18=0
Solve using the quadratic formula
r=6cos2(θ)−sin(θ)−42cos(θ)±(sin(θ)+42cos(θ))2−4×3cos2(θ)×18
Simplify
r=6cos2(θ)−sin(θ)−42cos(θ)±1+1547cos2(θ)+42sin(2θ)
Separate the equation into 2 possible cases
r=6cos2(θ)−sin(θ)−42cos(θ)+1+1547cos2(θ)+42sin(2θ)r=6cos2(θ)−sin(θ)−42cos(θ)−1+1547cos2(θ)+42sin(2θ)
Solution
r=6cos2(θ)−sin(θ)−42cos(θ)+1+1547cos2(θ)+42sin(2θ)r=−6cos2(θ)sin(θ)+42cos(θ)+1+1547cos2(θ)+42sin(2θ)
Show Solution
