Question
Function
Find the vertex
Find the axis of symmetry
Rewrite in vertex form
Load more

(32,256)
Evaluate
y=16x−4x2
Rewrite the function
y=16x−41x2
Write the quadratic function in standard form
y=−41x2+16x
Find the x-coordinate of the vertex by substituting a=−41 and b=16 into x = −2ab
x=−2(−41)16
Solve the equation for x
x=32
Find the y-coordinate of the vertex by evaluating the function for x=32
y=−41×322+16×32
Calculate
More Steps

Evaluate
−41×322+16×32
Multiply the numbers
More Steps

Evaluate
−41×322
Rewrite the expression
−41×210
Rewrite the expression
−221×210
Reduce the numbers
−1×28
Simplify
−28
−28+16×32
Multiply the numbers
−28+512
Evaluate the power
−256+512
Add the numbers
256
y=256
Solution
(32,256)
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
y=16x−4x2
To test if the graph of y=16x−4x2 is symmetry with respect to the origin,substitute -x for x and -y for y
−y=16(−x)−4(−x)2
Simplify
More Steps

Evaluate
16(−x)−4(−x)2
Multiply the numbers
−16x−4(−x)2
Rewrite the expression
−16x−4x2
−y=−16x−4x2
Change the signs both sides
y=16x+4x2
Solution
Not symmetry with respect to the origin
Show Solution

Identify the conic
Find the standard equation of the parabola
Find the vertex of the parabola
Find the focus of the parabola
Load more

(x−32)2=−4(y−256)
Evaluate
y=16x−4x2
Rewrite the expression
y=16x−41x2
Swap the sides of the equation
16x−41x2=y
Use the commutative property to reorder the terms
−41x2+16x=y
Multiply both sides of the equation by −4
(−41x2+16x)(−4)=y(−4)
Multiply the terms
More Steps

Evaluate
(−41x2+16x)(−4)
Use the the distributive property to expand the expression
−41x2(−4)+16x(−4)
Multiply the numbers
x2+16x(−4)
Multiply the numbers
x2−64x
x2−64x=y(−4)
Use the commutative property to reorder the terms
x2−64x=−4y
To complete the square, the same value needs to be added to both sides
x2−64x+1024=−4y+1024
Use a2−2ab+b2=(a−b)2 to factor the expression
(x−32)2=−4y+1024
Solution
(x−32)2=−4(y−256)
Show Solution

Solve the equation
Solve for x
Solve for y
x=32+2256−yx=32−2256−y
Evaluate
y=16x−4x2
Swap the sides of the equation
16x−4x2=y
Multiply both sides of the equation by LCD
(16x−4x2)×4=y×4
Simplify the equation
More Steps

Evaluate
(16x−4x2)×4
Apply the distributive property
16x×4−4x2×4
Simplify
16x×4−x2
Multiply the numbers
64x−x2
64x−x2=y×4
Use the commutative property to reorder the terms
64x−x2=4y
Move the expression to the left side
64x−x2−4y=0
Rewrite in standard form
−x2+64x−4y=0
Multiply both sides
x2−64x+4y=0
Substitute a=1,b=−64 and c=4y into the quadratic formula x=2a−b±b2−4ac
x=264±(−64)2−4×4y
Simplify the expression
More Steps

Evaluate
(−64)2−4×4y
Multiply the terms
(−64)2−16y
Rewrite the expression
642−16y
Evaluate the power
4096−16y
x=264±4096−16y
Simplify the radical expression
More Steps

Evaluate
4096−16y
Factor the expression
16(256−y)
The root of a product is equal to the product of the roots of each factor
16×256−y
Evaluate the root
More Steps

Evaluate
16
Write the number in exponential form with the base of 4
42
Reduce the index of the radical and exponent with 2
4
4256−y
x=264±4256−y
Separate the equation into 2 possible cases
x=264+4256−yx=264−4256−y
Simplify the expression
More Steps

Evaluate
x=264+4256−y
Divide the terms
More Steps

Evaluate
264+4256−y
Rewrite the expression
22(32+2256−y)
Reduce the fraction
32+2256−y
x=32+2256−y
x=32+2256−yx=264−4256−y
Solution
More Steps

Evaluate
x=264−4256−y
Divide the terms
More Steps

Evaluate
264−4256−y
Rewrite the expression
22(32−2256−y)
Reduce the fraction
32−2256−y
x=32−2256−y
x=32+2256−yx=32−2256−y
Show Solution

Rewrite the equation
r=0r=−4sin(θ)sec2(θ)+64sec(θ)
Evaluate
y=16x−4x2
Multiply both sides of the equation by LCD
y×4=(16x−4x2)×4
Use the commutative property to reorder the terms
4y=(16x−4x2)×4
Simplify the equation
More Steps

Evaluate
(16x−4x2)×4
Apply the distributive property
16x×4−4x2×4
Simplify
16x×4−x2
Multiply the numbers
64x−x2
4y=64x−x2
Move the expression to the left side
4y−64x+x2=0
To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ)
4sin(θ)×r−64cos(θ)×r+(cos(θ)×r)2=0
Factor the expression
cos2(θ)×r2+(4sin(θ)−64cos(θ))r=0
Factor the expression
r(cos2(θ)×r+4sin(θ)−64cos(θ))=0
When the product of factors equals 0,at least one factor is 0
r=0cos2(θ)×r+4sin(θ)−64cos(θ)=0
Solution
More Steps

Factor the expression
cos2(θ)×r+4sin(θ)−64cos(θ)=0
Subtract the terms
cos2(θ)×r+4sin(θ)−64cos(θ)−(4sin(θ)−64cos(θ))=0−(4sin(θ)−64cos(θ))
Evaluate
cos2(θ)×r=−4sin(θ)+64cos(θ)
Divide the terms
r=cos2(θ)−4sin(θ)+64cos(θ)
Simplify the expression
r=−4sin(θ)sec2(θ)+64sec(θ)
r=0r=−4sin(θ)sec2(θ)+64sec(θ)
Show Solution
