Question
Solve the equation
Solve for x
Solve for y
x=1+2y1
Evaluate
y=x−2xy−2x−y+2y+1
Calculate the sum or difference
More Steps

Evaluate
x−2xy−2x−y+2y+1
Subtract the terms
More Steps

Evaluate
x−2x
Collect like terms by calculating the sum or difference of their coefficients
(1−2)x
Subtract the numbers
−x
−x−2xy−y+2y+1
Add the terms
More Steps

Evaluate
−y+2y
Collect like terms by calculating the sum or difference of their coefficients
(−1+2)y
Add the numbers
y
−x−2xy+y+1
y=−x−2xy+y+1
Rewrite the expression
y=−x−2yx+y+1
Swap the sides of the equation
−x−2yx+y+1=y
Collect like terms by calculating the sum or difference of their coefficients
(−1−2y)x+y+1=y
Move the constant to the right side
(−1−2y)x=y−(y+1)
Subtract the terms
More Steps

Evaluate
y−(y+1)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
y−y−1
Since two opposites add up to 0,remove them form the expression
−1
(−1−2y)x=−1
Divide both sides
−1−2y(−1−2y)x=−1−2y−1
Divide the numbers
x=−1−2y−1
Solution
x=1+2y1
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
y=x−2xy−2x−y+2y+1
Calculate the sum or difference
More Steps

Evaluate
x−2xy−2x−y+2y+1
Subtract the terms
More Steps

Evaluate
x−2x
Collect like terms by calculating the sum or difference of their coefficients
(1−2)x
Subtract the numbers
−x
−x−2xy−y+2y+1
Add the terms
More Steps

Evaluate
−y+2y
Collect like terms by calculating the sum or difference of their coefficients
(−1+2)y
Add the numbers
y
−x−2xy+y+1
y=−x−2xy+y+1
To test if the graph of y=−x−2xy+y+1 is symmetry with respect to the origin,substitute -x for x and -y for y
−y=−(−x)−2(−x)(−y)−y+1
Evaluate
More Steps

Evaluate
−(−x)−2(−x)(−y)−y+1
Multiply the terms
−(−x)−2xy−y+1
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
x−2xy−y+1
−y=x−2xy−y+1
Solution
Not symmetry with respect to the origin
Show Solution

Rewrite the equation
r=2sin(2θ)−cos(θ)+cos2(θ)+4sin(2θ)r=−2sin(2θ)cos(θ)+cos2(θ)+4sin(2θ)
Evaluate
y=x−2xy−2x−y+2y+1
Evaluate
More Steps

Evaluate
x−2xy−2x−y+2y+1
Subtract the terms
More Steps

Evaluate
x−2x
Collect like terms by calculating the sum or difference of their coefficients
(1−2)x
Subtract the numbers
−x
−x−2xy−y+2y+1
Add the terms
More Steps

Evaluate
−y+2y
Collect like terms by calculating the sum or difference of their coefficients
(−1+2)y
Add the numbers
y
−x−2xy+y+1
y=−x−2xy+y+1
Move the expression to the left side
x+2xy=1
To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ)
cos(θ)×r+2cos(θ)×rsin(θ)×r=1
Factor the expression
2cos(θ)sin(θ)×r2+cos(θ)×r=1
Simplify the expression
sin(2θ)×r2+cos(θ)×r=1
Subtract the terms
sin(2θ)×r2+cos(θ)×r−1=1−1
Evaluate
sin(2θ)×r2+cos(θ)×r−1=0
Solve using the quadratic formula
r=2sin(2θ)−cos(θ)±cos2(θ)−4sin(2θ)(−1)
Simplify
r=2sin(2θ)−cos(θ)±cos2(θ)+4sin(2θ)
Separate the equation into 2 possible cases
r=2sin(2θ)−cos(θ)+cos2(θ)+4sin(2θ)r=2sin(2θ)−cos(θ)−cos2(θ)+4sin(2θ)
Solution
r=2sin(2θ)−cos(θ)+cos2(θ)+4sin(2θ)r=−2sin(2θ)cos(θ)+cos2(θ)+4sin(2θ)
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=−2x1+2y
Calculate
y=x−2xy−2x−y+2y+1
Simplify the expression
y=−x−2xy+y+1
Take the derivative of both sides
dxd(y)=dxd(−x−2xy+y+1)
Calculate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
dxdy=dxd(−x−2xy+y+1)
Calculate the derivative
More Steps

Evaluate
dxd(−x−2xy+y+1)
Use differentiation rules
dxd(−x)+dxd(−2xy)+dxd(y)+dxd(1)
Evaluate the derivative
More Steps

Evaluate
dxd(−x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
−dxd(x)
Use dxdxn=nxn−1 to find derivative
−1
−1+dxd(−2xy)+dxd(y)+dxd(1)
Evaluate the derivative
More Steps

Evaluate
dxd(−2xy)
Use differentiation rules
dxd(−2x)×y−2x×dxd(y)
Evaluate the derivative
−2y−2x×dxd(y)
Evaluate the derivative
−2y−2xdxdy
−1−2y−2xdxdy+dxd(y)+dxd(1)
Evaluate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
−1−2y−2xdxdy+dxdy+dxd(1)
Use dxd(c)=0 to find derivative
−1−2y−2xdxdy+dxdy+0
Evaluate
−1−2y−2xdxdy+dxdy
dxdy=−1−2y−2xdxdy+dxdy
Cancel equal terms on both sides of the expression
0=−1−2y−2xdxdy
Swap the sides of the equation
−1−2y−2xdxdy=0
Move the constant to the right side
−2xdxdy=0+1+2y
Removing 0 doesn't change the value,so remove it from the expression
−2xdxdy=1+2y
Divide both sides
−2x−2xdxdy=−2x1+2y
Divide the numbers
dxdy=−2x1+2y
Solution
dxdy=−2x1+2y
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=x21+2y
Calculate
y=x−2xy−2x−y+2y+1
Simplify the expression
y=−x−2xy+y+1
Take the derivative of both sides
dxd(y)=dxd(−x−2xy+y+1)
Calculate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
dxdy=dxd(−x−2xy+y+1)
Calculate the derivative
More Steps

Evaluate
dxd(−x−2xy+y+1)
Use differentiation rules
dxd(−x)+dxd(−2xy)+dxd(y)+dxd(1)
Evaluate the derivative
More Steps

Evaluate
dxd(−x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
−dxd(x)
Use dxdxn=nxn−1 to find derivative
−1
−1+dxd(−2xy)+dxd(y)+dxd(1)
Evaluate the derivative
More Steps

Evaluate
dxd(−2xy)
Use differentiation rules
dxd(−2x)×y−2x×dxd(y)
Evaluate the derivative
−2y−2x×dxd(y)
Evaluate the derivative
−2y−2xdxdy
−1−2y−2xdxdy+dxd(y)+dxd(1)
Evaluate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
−1−2y−2xdxdy+dxdy+dxd(1)
Use dxd(c)=0 to find derivative
−1−2y−2xdxdy+dxdy+0
Evaluate
−1−2y−2xdxdy+dxdy
dxdy=−1−2y−2xdxdy+dxdy
Cancel equal terms on both sides of the expression
0=−1−2y−2xdxdy
Swap the sides of the equation
−1−2y−2xdxdy=0
Move the constant to the right side
−2xdxdy=0+1+2y
Removing 0 doesn't change the value,so remove it from the expression
−2xdxdy=1+2y
Divide both sides
−2x−2xdxdy=−2x1+2y
Divide the numbers
dxdy=−2x1+2y
Use b−a=−ba=−ba to rewrite the fraction
dxdy=−2x1+2y
Take the derivative of both sides
dxd(dxdy)=dxd(−2x1+2y)
Calculate the derivative
dx2d2y=dxd(−2x1+2y)
Use differentiation rules
dx2d2y=−(2x)2dxd(1+2y)×2x−(1+2y)×dxd(2x)
Calculate the derivative
More Steps

Evaluate
dxd(1+2y)
Use differentiation rules
dxd(1)+dxd(2y)
Use dxd(c)=0 to find derivative
0+dxd(2y)
Evaluate the derivative
0+2dxdy
Evaluate
2dxdy
dx2d2y=−(2x)22dxdy×2x−(1+2y)×dxd(2x)
Calculate the derivative
More Steps

Evaluate
dxd(2x)
Simplify
2×dxd(x)
Rewrite the expression
2×1
Any expression multiplied by 1 remains the same
2
dx2d2y=−(2x)22dxdy×2x−(1+2y)×2
Calculate
dx2d2y=−(2x)24dxdy×x−(1+2y)×2
Calculate
More Steps

Evaluate
(1+2y)×2
Apply the distributive property
1×2+2y×2
Any expression multiplied by 1 remains the same
2+2y×2
Multiply the numbers
2+4y
dx2d2y=−(2x)24dxdy×x−(2+4y)
Calculate
More Steps

Calculate
4dxdy×x−(2+4y)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
4dxdy×x−2−4y
Use the commutative property to reorder the terms
4xdxdy−2−4y
dx2d2y=−(2x)24xdxdy−2−4y
Calculate
More Steps

Evaluate
(2x)2
Evaluate the power
22x2
Evaluate the power
4x2
dx2d2y=−4x24xdxdy−2−4y
Calculate
dx2d2y=−2x22xdxdy−1−2y
Use equation dxdy=−2x1+2y to substitute
dx2d2y=−2x22x(−2x1+2y)−1−2y
Solution
More Steps

Calculate
−2x22x(−2x1+2y)−1−2y
Multiply the terms
More Steps

Multiply the terms
2x(−2x1+2y)
Any expression multiplied by 1 remains the same
−2x×2x1+2y
Multiply the terms
−(1+2y)
Multiply the terms
−1−2y
−2x2−1−2y−1−2y
Subtract the terms
More Steps

Evaluate
−1−2y−1−2y
Subtract the numbers
−2−2y−2y
Subtract the terms
−2−4y
−2x2−2−4y
Divide the terms
More Steps

Evaluate
2x2−2−4y
Use b−a=−ba=−ba to rewrite the fraction
−2x22+4y
Factor
−2x22(1+2y)
Reduce the fraction
−x21+2y
−(−x21+2y)
Calculate
x21+2y
dx2d2y=x21+2y
Show Solution

Conic
(x′+42)2−(y′+42)2=1
Evaluate
y=x−2xy−2x−y+2y+1
Move the expression to the left side
y−(x−2xy−2x−y+2y+1)=0
Calculate
More Steps

Calculate
y−(x−2xy−2x−y+2y+1)
Subtract the terms
y−(−x−2xy−y+2y+1)
Add the terms
y−(−x−2xy+y+1)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
y+x+2xy−y−1
The sum of two opposites equals 0
More Steps

Evaluate
y−y
Collect like terms
(1−1)y
Add the coefficients
0×y
Calculate
0
0+x+2xy−1
Remove 0
x+2xy−1
x+2xy−1=0
The coefficients A,B and C of the general equation are A=0,B=2 and C=0
A=0B=2C=0
To find the angle of rotation θ,substitute the values of A,B and C into the formula cot(2θ)=BA−C
cot(2θ)=20−0
Calculate
cot(2θ)=0
Using the unit circle,find the smallest positive angle for which the cotangent is 0
2θ=2π
Calculate
θ=4π
To rotate the axes,use the equation of rotation and substitute 4π for θ
x=x′cos(4π)−y′sin(4π)y=x′sin(4π)+y′cos(4π)
Calculate
x=x′×22−y′sin(4π)y=x′sin(4π)+y′cos(4π)
Calculate
x=x′×22−y′×22y=x′sin(4π)+y′cos(4π)
Calculate
x=x′×22−y′×22y=x′×22+y′cos(4π)
Calculate
x=x′×22−y′×22y=x′×22+y′×22
Substitute x and y into the original equation x+2xy−1=0
x′×22−y′×22+2(x′×22−y′×22)(x′×22+y′×22)−1=0
Calculate
More Steps

Calculate
x′×22−y′×22+2(x′×22−y′×22)(x′×22+y′×22)−1
Use the commutative property to reorder the terms
22x′−y′×22+2(x′×22−y′×22)(x′×22+y′×22)−1
Use the commutative property to reorder the terms
22x′−22y′+2(x′×22−y′×22)(x′×22+y′×22)−1
Use the commutative property to reorder the terms
22x′−22y′+2(22x′−y′×22)(x′×22+y′×22)−1
Use the commutative property to reorder the terms
22x′−22y′+2(22x′−22y′)(x′×22+y′×22)−1
Use the commutative property to reorder the terms
22x′−22y′+2(22x′−22y′)(22x′+y′×22)−1
Use the commutative property to reorder the terms
22x′−22y′+2(22x′−22y′)(22x′+22y′)−1
Expand the expression
More Steps

Calculate
2(22x′−22y′)(22x′+22y′)
Simplify
(2×x′−2×y′)(22x′+22y′)
Apply the distributive property
2×x′×22x′+2×x′×22y′−2×y′×22x′−2×y′×22y′
Multiply the terms
(x′)2+2×x′×22y′−2×y′×22x′−2×y′×22y′
Multiply the numbers
(x′)2+x′y′−2×y′×22x′−2×y′×22y′
Multiply the numbers
(x′)2+x′y′−y′x′−2×y′×22y′
Multiply the terms
(x′)2+x′y′−y′x′−(y′)2
Subtract the terms
(x′)2+0−(y′)2
Removing 0 doesn't change the value,so remove it from the expression
(x′)2−(y′)2
22x′−22y′+(x′)2−(y′)2−1
22x′−22y′+(x′)2−(y′)2−1=0
Move the constant to the right-hand side and change its sign
22x′−22y′+(x′)2−(y′)2=0−(−1)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
22x′−22y′+(x′)2−(y′)2=0+1
Removing 0 doesn't change the value,so remove it from the expression
22x′−22y′+(x′)2−(y′)2=1
Use the commutative property to reorder the terms
(x′)2+22x′−(y′)2−22y′=1
To complete the square, the same value needs to be added to both sides
(x′)2+22x′+81−(y′)2−22y′=1+81
Use a2+2ab+b2=(a+b)2 to factor the expression
(x′+42)2−(y′)2−22y′=1+81
Add the numbers
More Steps

Evaluate
1+81
Reduce fractions to a common denominator
88+81
Write all numerators above the common denominator
88+1
Add the numbers
89
(x′+42)2−(y′)2−22y′=89
Factor out the negative sign from the expression
(x′+42)2−(y′)2−22y′−81=89−81
Use a2+2ab+b2=(a+b)2 to factor the expression
(x′+42)2−(y′+42)2=89−81
Solution
More Steps

Evaluate
89−81
Write all numerators above the common denominator
89−1
Subtract the numbers
88
Reduce the numbers
11
Calculate
1
(x′+42)2−(y′+42)2=1
Show Solution
