Question
Solve the equation
Solve for x
Solve for y
x=7y25+12y
Evaluate
y×14x−24y=50
Use the commutative property to reorder the terms
14yx−24y=50
Move the expression to the right-hand side and change its sign
14yx=50+24y
Divide both sides
14y14yx=14y50+24y
Divide the numbers
x=14y50+24y
Solution
More Steps

Evaluate
14y50+24y
Rewrite the expression
14y2(25+12y)
Cancel out the common factor 2
7y25+12y
x=7y25+12y
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
y×14x−24y=50
Use the commutative property to reorder the terms
14yx−24y=50
To test if the graph of 14yx−24y=50 is symmetry with respect to the origin,substitute -x for x and -y for y
14(−y)(−x)−24(−y)=50
Evaluate
More Steps

Evaluate
14(−y)(−x)−24(−y)
Multiply the terms
14yx−24(−y)
Multiply the numbers
14yx−(−24y)
Rewrite the expression
14yx+24y
14yx+24y=50
Solution
Not symmetry with respect to the origin
Show Solution

Rewrite the equation
r=7sin(2θ)12sin(θ)+144sin2(θ)+350sin(2θ)r=7sin(2θ)12sin(θ)−144sin2(θ)+350sin(2θ)
Evaluate
y×14x−24y=50
Use the commutative property to reorder the terms
14yx−24y=50
To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ)
14sin(θ)×rcos(θ)×r−24sin(θ)×r=50
Factor the expression
14sin(θ)cos(θ)×r2−24sin(θ)×r=50
Simplify the expression
7sin(2θ)×r2−24sin(θ)×r=50
Subtract the terms
7sin(2θ)×r2−24sin(θ)×r−50=50−50
Evaluate
7sin(2θ)×r2−24sin(θ)×r−50=0
Solve using the quadratic formula
r=14sin(2θ)24sin(θ)±(−24sin(θ))2−4×7sin(2θ)(−50)
Simplify
r=14sin(2θ)24sin(θ)±576sin2(θ)+1400sin(2θ)
Separate the equation into 2 possible cases
r=14sin(2θ)24sin(θ)+576sin2(θ)+1400sin(2θ)r=14sin(2θ)24sin(θ)−576sin2(θ)+1400sin(2θ)
Evaluate
More Steps

Evaluate
14sin(2θ)24sin(θ)+576sin2(θ)+1400sin(2θ)
Simplify the root
More Steps

Evaluate
576sin2(θ)+1400sin(2θ)
Factor the expression
8(72sin2(θ)+175sin(2θ))
Write the expression as a product where the root of one of the factors can be evaluated
4×2(72sin2(θ)+175sin(2θ))
Write the number in exponential form with the base of 2
22×2(72sin2(θ)+175sin(2θ))
Calculate
22(72sin2(θ)+175sin(2θ))
Calculate
2144sin2(θ)+350sin(2θ)
14sin(2θ)24sin(θ)+2144sin2(θ)+350sin(2θ)
Factor
14sin(2θ)2(12sin(θ)+144sin2(θ)+350sin(2θ))
Reduce the fraction
7sin(2θ)12sin(θ)+144sin2(θ)+350sin(2θ)
r=7sin(2θ)12sin(θ)+144sin2(θ)+350sin(2θ)r=14sin(2θ)24sin(θ)−576sin2(θ)+1400sin(2θ)
Solution
More Steps

Evaluate
14sin(2θ)24sin(θ)−576sin2(θ)+1400sin(2θ)
Simplify the root
More Steps

Evaluate
576sin2(θ)+1400sin(2θ)
Factor the expression
8(72sin2(θ)+175sin(2θ))
Write the expression as a product where the root of one of the factors can be evaluated
4×2(72sin2(θ)+175sin(2θ))
Write the number in exponential form with the base of 2
22×2(72sin2(θ)+175sin(2θ))
Calculate
22(72sin2(θ)+175sin(2θ))
Calculate
2144sin2(θ)+350sin(2θ)
14sin(2θ)24sin(θ)−2144sin2(θ)+350sin(2θ)
Factor
14sin(2θ)2(12sin(θ)−144sin2(θ)+350sin(2θ))
Reduce the fraction
7sin(2θ)12sin(θ)−144sin2(θ)+350sin(2θ)
r=7sin(2θ)12sin(θ)+144sin2(θ)+350sin(2θ)r=7sin(2θ)12sin(θ)−144sin2(θ)+350sin(2θ)
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=−7x−127y
Calculate
y14x−24y=50
Simplify the expression
14yx−24y=50
Take the derivative of both sides
dxd(14yx−24y)=dxd(50)
Calculate the derivative
More Steps

Evaluate
dxd(14yx−24y)
Use differentiation rules
dxd(14yx)+dxd(−24y)
Evaluate the derivative
More Steps

Evaluate
dxd(14yx)
Use differentiation rules
dxd(14x)×y+14x×dxd(y)
Evaluate the derivative
14y+14x×dxd(y)
Evaluate the derivative
14y+14xdxdy
14y+14xdxdy+dxd(−24y)
Evaluate the derivative
More Steps

Evaluate
dxd(−24y)
Use differentiation rules
dyd(−24y)×dxdy
Evaluate the derivative
−24dxdy
14y+14xdxdy−24dxdy
14y+14xdxdy−24dxdy=dxd(50)
Calculate the derivative
14y+14xdxdy−24dxdy=0
Collect like terms by calculating the sum or difference of their coefficients
14y+(14x−24)dxdy=0
Move the constant to the right side
(14x−24)dxdy=0−14y
Removing 0 doesn't change the value,so remove it from the expression
(14x−24)dxdy=−14y
Divide both sides
14x−24(14x−24)dxdy=14x−24−14y
Divide the numbers
dxdy=14x−24−14y
Solution
More Steps

Evaluate
14x−24−14y
Rewrite the expression
2(7x−12)−14y
Cancel out the common factor 2
7x−12−7y
Use b−a=−ba=−ba to rewrite the fraction
−7x−127y
dxdy=−7x−127y
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=49x2−168x+14498y
Calculate
y14x−24y=50
Simplify the expression
14yx−24y=50
Take the derivative of both sides
dxd(14yx−24y)=dxd(50)
Calculate the derivative
More Steps

Evaluate
dxd(14yx−24y)
Use differentiation rules
dxd(14yx)+dxd(−24y)
Evaluate the derivative
More Steps

Evaluate
dxd(14yx)
Use differentiation rules
dxd(14x)×y+14x×dxd(y)
Evaluate the derivative
14y+14x×dxd(y)
Evaluate the derivative
14y+14xdxdy
14y+14xdxdy+dxd(−24y)
Evaluate the derivative
More Steps

Evaluate
dxd(−24y)
Use differentiation rules
dyd(−24y)×dxdy
Evaluate the derivative
−24dxdy
14y+14xdxdy−24dxdy
14y+14xdxdy−24dxdy=dxd(50)
Calculate the derivative
14y+14xdxdy−24dxdy=0
Collect like terms by calculating the sum or difference of their coefficients
14y+(14x−24)dxdy=0
Move the constant to the right side
(14x−24)dxdy=0−14y
Removing 0 doesn't change the value,so remove it from the expression
(14x−24)dxdy=−14y
Divide both sides
14x−24(14x−24)dxdy=14x−24−14y
Divide the numbers
dxdy=14x−24−14y
Divide the numbers
More Steps

Evaluate
14x−24−14y
Rewrite the expression
2(7x−12)−14y
Cancel out the common factor 2
7x−12−7y
Use b−a=−ba=−ba to rewrite the fraction
−7x−127y
dxdy=−7x−127y
Take the derivative of both sides
dxd(dxdy)=dxd(−7x−127y)
Calculate the derivative
dx2d2y=dxd(−7x−127y)
Use differentiation rules
dx2d2y=−(7x−12)2dxd(7y)×(7x−12)−7y×dxd(7x−12)
Calculate the derivative
More Steps

Evaluate
dxd(7y)
Simplify
7×dxd(y)
Calculate
7dxdy
dx2d2y=−(7x−12)27dxdy×(7x−12)−7y×dxd(7x−12)
Calculate the derivative
More Steps

Evaluate
dxd(7x−12)
Use differentiation rules
dxd(7x)+dxd(−12)
Evaluate the derivative
7+dxd(−12)
Use dxd(c)=0 to find derivative
7+0
Evaluate
7
dx2d2y=−(7x−12)27dxdy×(7x−12)−7y×7
Calculate
More Steps

Evaluate
7dxdy×(7x−12)
Apply the distributive property
7dxdy×7x−7dxdy×12
Multiply the terms
49xdxdy−7dxdy×12
Multiply the numbers
49xdxdy−84dxdy
dx2d2y=−(7x−12)249xdxdy−84dxdy−7y×7
Calculate
dx2d2y=−(7x−12)249xdxdy−84dxdy−49y
Use equation dxdy=−7x−127y to substitute
dx2d2y=−(7x−12)249x(−7x−127y)−84(−7x−127y)−49y
Solution
More Steps

Calculate
−(7x−12)249x(−7x−127y)−84(−7x−127y)−49y
Multiply
More Steps

Multiply the terms
49x(−7x−127y)
Any expression multiplied by 1 remains the same
−49x×7x−127y
Multiply the terms
−7x−12343xy
−(7x−12)2−7x−12343xy−84(−7x−127y)−49y
Multiply the terms
More Steps

Evaluate
−84(−7x−127y)
Multiplying or dividing an even number of negative terms equals a positive
84×7x−127y
Multiply the terms
7x−1284×7y
Multiply the terms
7x−12588y
−(7x−12)2−7x−12343xy+7x−12588y−49y
Calculate the sum or difference
More Steps

Evaluate
−7x−12343xy+7x−12588y−49y
Reduce fractions to a common denominator
−7x−12343xy+7x−12588y−7x−1249y(7x−12)
Write all numerators above the common denominator
7x−12−343xy+588y−49y(7x−12)
Multiply the terms
7x−12−343xy+588y−(343xy−588y)
Calculate the sum or difference
7x−12−686xy+1176y
Factor the expression
7x−12−98y(7x−12)
Reduce the fraction
−98y
−(7x−12)2−98y
Use b−a=−ba=−ba to rewrite the fraction
−(−(7x−12)298y)
Calculate
(7x−12)298y
Expand the expression
More Steps

Evaluate
(7x−12)2
Use (a−b)2=a2−2ab+b2 to expand the expression
(7x)2−2×7x×12+122
Calculate
49x2−168x+144
49x2−168x+14498y
dx2d2y=49x2−168x+14498y
Show Solution

Conic
750(x′−762)2−750(y′+762)2=1
Evaluate
y×14x−24y=50
Move the expression to the left side
y×14x−24y−50=0
Use the commutative property to reorder the terms
14yx−24y−50=0
The coefficients A,B and C of the general equation are A=0,B=14 and C=0
A=0B=14C=0
To find the angle of rotation θ,substitute the values of A,B and C into the formula cot(2θ)=BA−C
cot(2θ)=140−0
Calculate
cot(2θ)=0
Using the unit circle,find the smallest positive angle for which the cotangent is 0
2θ=2π
Calculate
θ=4π
To rotate the axes,use the equation of rotation and substitute 4π for θ
x=x′cos(4π)−y′sin(4π)y=x′sin(4π)+y′cos(4π)
Calculate
x=x′×22−y′sin(4π)y=x′sin(4π)+y′cos(4π)
Calculate
x=x′×22−y′×22y=x′sin(4π)+y′cos(4π)
Calculate
x=x′×22−y′×22y=x′×22+y′cos(4π)
Calculate
x=x′×22−y′×22y=x′×22+y′×22
Substitute x and y into the original equation 14yx−24y−50=0
14(x′×22+y′×22)(x′×22−y′×22)−24(x′×22+y′×22)−50=0
Calculate
More Steps

Calculate
14(x′×22+y′×22)(x′×22−y′×22)−24(x′×22+y′×22)−50
Use the commutative property to reorder the terms
14(22x′+y′×22)(x′×22−y′×22)−24(x′×22+y′×22)−50
Use the commutative property to reorder the terms
14(22x′+22y′)(x′×22−y′×22)−24(x′×22+y′×22)−50
Use the commutative property to reorder the terms
14(22x′+22y′)(22x′−y′×22)−24(x′×22+y′×22)−50
Use the commutative property to reorder the terms
14(22x′+22y′)(22x′−22y′)−24(x′×22+y′×22)−50
Use the commutative property to reorder the terms
14(22x′+22y′)(22x′−22y′)−24(22x′+y′×22)−50
Use the commutative property to reorder the terms
14(22x′+22y′)(22x′−22y′)−24(22x′+22y′)−50
Expand the expression
More Steps

Calculate
14(22x′+22y′)(22x′−22y′)
Simplify
(72×x′+72×y′)(22x′−22y′)
Apply the distributive property
72×x′×22x′−72×x′×22y′+72×y′×22x′−72×y′×22y′
Multiply the terms
7(x′)2−72×x′×22y′+72×y′×22x′−72×y′×22y′
Multiply the numbers
7(x′)2−7x′y′+72×y′×22x′−72×y′×22y′
Multiply the numbers
7(x′)2−7x′y′+7y′x′−72×y′×22y′
Multiply the terms
7(x′)2−7x′y′+7y′x′−7(y′)2
Add the terms
7(x′)2+0−7(y′)2
Removing 0 doesn't change the value,so remove it from the expression
7(x′)2−7(y′)2
7(x′)2−7(y′)2−24(22x′+22y′)−50
Expand the expression
More Steps

Calculate
−24(22x′+22y′)
Apply the distributive property
−24×22x′−24×22y′
Multiply the numbers
−122×x′−24×22y′
Multiply the numbers
−122×x′−122×y′
7(x′)2−7(y′)2−122×x′−122×y′−50
7(x′)2−7(y′)2−122×x′−122×y′−50=0
Move the constant to the right-hand side and change its sign
7(x′)2−7(y′)2−122×x′−122×y′=0−(−50)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
7(x′)2−7(y′)2−122×x′−122×y′=0+50
Removing 0 doesn't change the value,so remove it from the expression
7(x′)2−7(y′)2−122×x′−122×y′=50
Use the commutative property to reorder the terms
7(x′)2−122×x′−7(y′)2−122×y′=50
To complete the square, the same value needs to be added to both sides
7(x′)2−122×x′+772−7(y′)2−122×y′=50+772
Factor out 7 from the expression
7((x′)2−7122x′+4972)−7(y′)2−122×y′=50+772
Use a2−2ab+b2=(a−b)2 to factor the expression
7(x′−762)2−7(y′)2−122×y′=50+772
Add the numbers
More Steps

Evaluate
50+772
Reduce fractions to a common denominator
750×7+772
Write all numerators above the common denominator
750×7+72
Multiply the numbers
7350+72
Add the numbers
7422
7(x′−762)2−7(y′)2−122×y′=7422
To complete the square, the same value needs to be subtract from both sides
7(x′−762)2−7(y′)2−122×y′−772=7422−772
Factor out −7 from the expression
7(x′−762)2−7((y′)2+7122y′+4972)=7422−772
Use a2+2ab+b2=(a+b)2 to factor the expression
7(x′−762)2−7(y′+762)2=7422−772
Subtract the numbers
More Steps

Evaluate
7422−772
Write all numerators above the common denominator
7422−72
Subtract the numbers
7350
Reduce the numbers
150
Calculate
50
7(x′−762)2−7(y′+762)2=50
Multiply both sides of the equation by 501
7(x′−762)2−7(y′+762)2×501=50×501
Multiply the terms
More Steps

Evaluate
7(x′−762)2−7(y′+762)2×501
Use the the distributive property to expand the expression
7(x′−762)2×501−7(y′+762)2×501
Multiply the numbers
507(x′−762)2−7(y′+762)2×501
Multiply the numbers
507(x′−762)2−507(y′+762)2
507(x′−762)2−507(y′+762)2=50×501
Multiply the terms
More Steps

Evaluate
50×501
Reduce the numbers
1×1
Simplify
1
507(x′−762)2−507(y′+762)2=1
Use a=a11 to transform the expression
750(x′−762)2−507(y′+762)2=1
Solution
750(x′−762)2−750(y′+762)2=1
Show Solution
