Question
Solve the equation
Solve for x
Solve for y
x=9y−4+5y
Evaluate
y×9x−5y=−4
Use the commutative property to reorder the terms
9yx−5y=−4
Move the expression to the right-hand side and change its sign
9yx=−4+5y
Divide both sides
9y9yx=9y−4+5y
Solution
x=9y−4+5y
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
y×9x−5y=−4
Use the commutative property to reorder the terms
9yx−5y=−4
To test if the graph of 9yx−5y=−4 is symmetry with respect to the origin,substitute -x for x and -y for y
9(−y)(−x)−5(−y)=−4
Evaluate
More Steps

Evaluate
9(−y)(−x)−5(−y)
Multiply the terms
9yx−5(−y)
Multiply the numbers
9yx−(−5y)
Rewrite the expression
9yx+5y
9yx+5y=−4
Solution
Not symmetry with respect to the origin
Show Solution

Rewrite the equation
r=9sin(2θ)5sin(θ)+25sin2(θ)−72sin(2θ)r=9sin(2θ)5sin(θ)−25sin2(θ)−72sin(2θ)
Evaluate
y×9x−5y=−4
Use the commutative property to reorder the terms
9yx−5y=−4
To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ)
9sin(θ)×rcos(θ)×r−5sin(θ)×r=−4
Factor the expression
9sin(θ)cos(θ)×r2−5sin(θ)×r=−4
Simplify the expression
29sin(2θ)×r2−5sin(θ)×r=−4
Subtract the terms
29sin(2θ)×r2−5sin(θ)×r−(−4)=−4−(−4)
Evaluate
29sin(2θ)×r2−5sin(θ)×r+4=0
Solve using the quadratic formula
r=9sin(2θ)5sin(θ)±(−5sin(θ))2−4×29sin(2θ)×4
Simplify
r=9sin(2θ)5sin(θ)±25sin2(θ)−72sin(2θ)
Solution
r=9sin(2θ)5sin(θ)+25sin2(θ)−72sin(2θ)r=9sin(2θ)5sin(θ)−25sin2(θ)−72sin(2θ)
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=−9x−59y
Calculate
y9x−5y=−4
Simplify the expression
9yx−5y=−4
Take the derivative of both sides
dxd(9yx−5y)=dxd(−4)
Calculate the derivative
More Steps

Evaluate
dxd(9yx−5y)
Use differentiation rules
dxd(9yx)+dxd(−5y)
Evaluate the derivative
More Steps

Evaluate
dxd(9yx)
Use differentiation rules
dxd(9x)×y+9x×dxd(y)
Evaluate the derivative
9y+9x×dxd(y)
Evaluate the derivative
9y+9xdxdy
9y+9xdxdy+dxd(−5y)
Evaluate the derivative
More Steps

Evaluate
dxd(−5y)
Use differentiation rules
dyd(−5y)×dxdy
Evaluate the derivative
−5dxdy
9y+9xdxdy−5dxdy
9y+9xdxdy−5dxdy=dxd(−4)
Calculate the derivative
9y+9xdxdy−5dxdy=0
Collect like terms by calculating the sum or difference of their coefficients
9y+(9x−5)dxdy=0
Move the constant to the right side
(9x−5)dxdy=0−9y
Removing 0 doesn't change the value,so remove it from the expression
(9x−5)dxdy=−9y
Divide both sides
9x−5(9x−5)dxdy=9x−5−9y
Divide the numbers
dxdy=9x−5−9y
Solution
dxdy=−9x−59y
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=81x2−90x+25162y
Calculate
y9x−5y=−4
Simplify the expression
9yx−5y=−4
Take the derivative of both sides
dxd(9yx−5y)=dxd(−4)
Calculate the derivative
More Steps

Evaluate
dxd(9yx−5y)
Use differentiation rules
dxd(9yx)+dxd(−5y)
Evaluate the derivative
More Steps

Evaluate
dxd(9yx)
Use differentiation rules
dxd(9x)×y+9x×dxd(y)
Evaluate the derivative
9y+9x×dxd(y)
Evaluate the derivative
9y+9xdxdy
9y+9xdxdy+dxd(−5y)
Evaluate the derivative
More Steps

Evaluate
dxd(−5y)
Use differentiation rules
dyd(−5y)×dxdy
Evaluate the derivative
−5dxdy
9y+9xdxdy−5dxdy
9y+9xdxdy−5dxdy=dxd(−4)
Calculate the derivative
9y+9xdxdy−5dxdy=0
Collect like terms by calculating the sum or difference of their coefficients
9y+(9x−5)dxdy=0
Move the constant to the right side
(9x−5)dxdy=0−9y
Removing 0 doesn't change the value,so remove it from the expression
(9x−5)dxdy=−9y
Divide both sides
9x−5(9x−5)dxdy=9x−5−9y
Divide the numbers
dxdy=9x−5−9y
Use b−a=−ba=−ba to rewrite the fraction
dxdy=−9x−59y
Take the derivative of both sides
dxd(dxdy)=dxd(−9x−59y)
Calculate the derivative
dx2d2y=dxd(−9x−59y)
Use differentiation rules
dx2d2y=−(9x−5)2dxd(9y)×(9x−5)−9y×dxd(9x−5)
Calculate the derivative
More Steps

Evaluate
dxd(9y)
Simplify
9×dxd(y)
Calculate
9dxdy
dx2d2y=−(9x−5)29dxdy×(9x−5)−9y×dxd(9x−5)
Calculate the derivative
More Steps

Evaluate
dxd(9x−5)
Use differentiation rules
dxd(9x)+dxd(−5)
Evaluate the derivative
9+dxd(−5)
Use dxd(c)=0 to find derivative
9+0
Evaluate
9
dx2d2y=−(9x−5)29dxdy×(9x−5)−9y×9
Calculate
More Steps

Evaluate
9dxdy×(9x−5)
Apply the distributive property
9dxdy×9x−9dxdy×5
Multiply the terms
81xdxdy−9dxdy×5
Multiply the numbers
81xdxdy−45dxdy
dx2d2y=−(9x−5)281xdxdy−45dxdy−9y×9
Calculate
dx2d2y=−(9x−5)281xdxdy−45dxdy−81y
Use equation dxdy=−9x−59y to substitute
dx2d2y=−(9x−5)281x(−9x−59y)−45(−9x−59y)−81y
Solution
More Steps

Calculate
−(9x−5)281x(−9x−59y)−45(−9x−59y)−81y
Multiply
More Steps

Multiply the terms
81x(−9x−59y)
Any expression multiplied by 1 remains the same
−81x×9x−59y
Multiply the terms
−9x−5729xy
−(9x−5)2−9x−5729xy−45(−9x−59y)−81y
Multiply the terms
More Steps

Evaluate
−45(−9x−59y)
Multiplying or dividing an even number of negative terms equals a positive
45×9x−59y
Multiply the terms
9x−545×9y
Multiply the terms
9x−5405y
−(9x−5)2−9x−5729xy+9x−5405y−81y
Calculate the sum or difference
More Steps

Evaluate
−9x−5729xy+9x−5405y−81y
Reduce fractions to a common denominator
−9x−5729xy+9x−5405y−9x−581y(9x−5)
Write all numerators above the common denominator
9x−5−729xy+405y−81y(9x−5)
Multiply the terms
9x−5−729xy+405y−(729xy−405y)
Calculate the sum or difference
9x−5−1458xy+810y
Factor the expression
9x−5−162y(9x−5)
Reduce the fraction
−162y
−(9x−5)2−162y
Use b−a=−ba=−ba to rewrite the fraction
−(−(9x−5)2162y)
Calculate
(9x−5)2162y
Expand the expression
More Steps

Evaluate
(9x−5)2
Use (a−b)2=a2−2ab+b2 to expand the expression
(9x)2−2×9x×5+52
Calculate
81x2−90x+25
81x2−90x+25162y
dx2d2y=81x2−90x+25162y
Show Solution

Conic
98(y′+1852)2−98(x′−1852)2=1
Evaluate
y×9x−5y=−4
Move the expression to the left side
y×9x−5y−(−4)=0
Calculate
More Steps

Calculate
y×9x−5y−(−4)
Use the commutative property to reorder the terms
9yx−5y−(−4)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
9yx−5y+4
9yx−5y+4=0
The coefficients A,B and C of the general equation are A=0,B=9 and C=0
A=0B=9C=0
To find the angle of rotation θ,substitute the values of A,B and C into the formula cot(2θ)=BA−C
cot(2θ)=90−0
Calculate
cot(2θ)=0
Using the unit circle,find the smallest positive angle for which the cotangent is 0
2θ=2π
Calculate
θ=4π
To rotate the axes,use the equation of rotation and substitute 4π for θ
x=x′cos(4π)−y′sin(4π)y=x′sin(4π)+y′cos(4π)
Calculate
x=x′×22−y′sin(4π)y=x′sin(4π)+y′cos(4π)
Calculate
x=x′×22−y′×22y=x′sin(4π)+y′cos(4π)
Calculate
x=x′×22−y′×22y=x′×22+y′cos(4π)
Calculate
x=x′×22−y′×22y=x′×22+y′×22
Substitute x and y into the original equation 9yx−5y+4=0
9(x′×22+y′×22)(x′×22−y′×22)−5(x′×22+y′×22)+4=0
Calculate
More Steps

Calculate
9(x′×22+y′×22)(x′×22−y′×22)−5(x′×22+y′×22)+4
Use the commutative property to reorder the terms
9(22x′+y′×22)(x′×22−y′×22)−5(x′×22+y′×22)+4
Use the commutative property to reorder the terms
9(22x′+22y′)(x′×22−y′×22)−5(x′×22+y′×22)+4
Use the commutative property to reorder the terms
9(22x′+22y′)(22x′−y′×22)−5(x′×22+y′×22)+4
Use the commutative property to reorder the terms
9(22x′+22y′)(22x′−22y′)−5(x′×22+y′×22)+4
Use the commutative property to reorder the terms
9(22x′+22y′)(22x′−22y′)−5(22x′+y′×22)+4
Use the commutative property to reorder the terms
9(22x′+22y′)(22x′−22y′)−5(22x′+22y′)+4
Expand the expression
More Steps

Calculate
9(22x′+22y′)(22x′−22y′)
Simplify
(292x′+292y′)(22x′−22y′)
Apply the distributive property
292x′×22x′−292x′×22y′+292y′×22x′−292y′×22y′
Multiply the terms
29(x′)2−292x′×22y′+292y′×22x′−292y′×22y′
Multiply the numbers
29(x′)2−29x′y′+292y′×22x′−292y′×22y′
Multiply the numbers
29(x′)2−29x′y′+29y′x′−292y′×22y′
Multiply the terms
29(x′)2−29x′y′+29y′x′−29(y′)2
Add the terms
29(x′)2+0−29(y′)2
Removing 0 doesn't change the value,so remove it from the expression
29(x′)2−29(y′)2
29(x′)2−29(y′)2−5(22x′+22y′)+4
Expand the expression
More Steps

Calculate
−5(22x′+22y′)
Apply the distributive property
−5×22x′−5×22y′
Multiply the numbers
−252x′−5×22y′
Multiply the numbers
−252x′−252y′
29(x′)2−29(y′)2−252x′−252y′+4
29(x′)2−29(y′)2−252x′−252y′+4=0
Move the constant to the right-hand side and change its sign
29(x′)2−29(y′)2−252x′−252y′=0−4
Removing 0 doesn't change the value,so remove it from the expression
29(x′)2−29(y′)2−252x′−252y′=−4
Use the commutative property to reorder the terms
29(x′)2−252x′−29(y′)2−252y′=−4
To complete the square, the same value needs to be added to both sides
29(x′)2−252x′+3625−29(y′)2−252y′=−4+3625
Factor out 29 from the expression
29((x′)2−952x′+16225)−29(y′)2−252y′=−4+3625
Use a2−2ab+b2=(a−b)2 to factor the expression
29(x′−1852)2−29(y′)2−252y′=−4+3625
Add the numbers
More Steps

Evaluate
−4+3625
Reduce fractions to a common denominator
−364×36+3625
Write all numerators above the common denominator
36−4×36+25
Multiply the numbers
36−144+25
Add the numbers
36−119
Use b−a=−ba=−ba to rewrite the fraction
−36119
29(x′−1852)2−29(y′)2−252y′=−36119
To complete the square, the same value needs to be subtract from both sides
29(x′−1852)2−29(y′)2−252y′−3625=−36119−3625
Factor out −29 from the expression
29(x′−1852)2−29((y′)2+952y′+16225)=−36119−3625
Use a2+2ab+b2=(a+b)2 to factor the expression
29(x′−1852)2−29(y′+1852)2=−36119−3625
Subtract the numbers
More Steps

Evaluate
−36119−3625
Write all numerators above the common denominator
36−119−25
Subtract the numbers
36−144
Reduce the numbers
1−4
Calculate
−4
29(x′−1852)2−29(y′+1852)2=−4
Multiply both sides of the equation by −41
29(x′−1852)2−29(y′+1852)2(−41)=−4(−41)
Multiply the terms
More Steps

Evaluate
29(x′−1852)2−29(y′+1852)2(−41)
Use the the distributive property to expand the expression
29(x′−1852)2(−41)−29(y′+1852)2(−41)
Multiply
More Steps

Evaluate
29(x′−1852)2(−41)
Rewrite the expression
−29(x′−1852)2×41
Multiply the terms
−89(x′−1852)2
−89(x′−1852)2−29(y′+1852)2(−41)
Multiply
More Steps

Evaluate
−29(y′+1852)2(−41)
Rewrite the expression
29(y′+1852)2×41
Multiply the terms
89(y′+1852)2
−89(x′−1852)2+89(y′+1852)2
−89(x′−1852)2+89(y′+1852)2=−4(−41)
Multiply the terms
More Steps

Evaluate
−4(−41)
Multiplying or dividing an even number of negative terms equals a positive
4×41
Reduce the numbers
1×1
Simplify
1
−89(x′−1852)2+89(y′+1852)2=1
Use a=a11 to transform the expression
−98(x′−1852)2+89(y′+1852)2=1
Use a=a11 to transform the expression
−98(x′−1852)2+98(y′+1852)2=1
Solution
98(y′+1852)2−98(x′−1852)2=1
Show Solution
