Question
Function
Find the vertex
Find the axis of symmetry
Rewrite in vertex form
Load more

(−11,25)
Evaluate
y=−x2−22x−96
Find the x-coordinate of the vertex by substituting a=−1 and b=−22 into x = −2ab
x=−2(−1)−22
Solve the equation for x
x=−11
Find the y-coordinate of the vertex by evaluating the function for x=−11
y=−(−11)2−22(−11)−96
Calculate
More Steps

Evaluate
−(−11)2−22(−11)−96
Multiply the numbers
More Steps

Evaluate
−22(−11)
Multiplying or dividing an even number of negative terms equals a positive
22×11
Multiply the numbers
242
−(−11)2+242−96
Evaluate the power
−121+242−96
Calculate the sum or difference
25
y=25
Solution
(−11,25)
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
y=−x2−22x−96
To test if the graph of y=−x2−22x−96 is symmetry with respect to the origin,substitute -x for x and -y for y
−y=−(−x)2−22(−x)−96
Simplify
More Steps

Evaluate
−(−x)2−22(−x)−96
Multiply the numbers
−(−x)2+22x−96
Rewrite the expression
−x2+22x−96
−y=−x2+22x−96
Change the signs both sides
y=x2−22x+96
Solution
Not symmetry with respect to the origin
Show Solution

Identify the conic
Find the standard equation of the parabola
Find the vertex of the parabola
Find the focus of the parabola
Load more

(x+11)2=−(y−25)
Evaluate
y=−x2−22x−96
Swap the sides of the equation
−x2−22x−96=y
Move the constant to the right-hand side and change its sign
−x2−22x=y−(−96)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−x2−22x=y+96
Multiply both sides of the equation by −1
(−x2−22x)(−1)=(y+96)(−1)
Multiply the terms
More Steps

Evaluate
(−x2−22x)(−1)
Use the the distributive property to expand the expression
−x2(−1)−22x(−1)
Multiplying or dividing an even number of negative terms equals a positive
x2−22x(−1)
Multiply the numbers
x2+22x
x2+22x=(y+96)(−1)
Multiply the terms
More Steps

Evaluate
(y+96)(−1)
Apply the distributive property
y(−1)+96(−1)
Multiplying or dividing an odd number of negative terms equals a negative
−y+96(−1)
Simplify
−y−96
x2+22x=−y−96
To complete the square, the same value needs to be added to both sides
x2+22x+121=−y−96+121
Use a2+2ab+b2=(a+b)2 to factor the expression
(x+11)2=−y−96+121
Add the numbers
(x+11)2=−y+25
Solution
(x+11)2=−(y−25)
Show Solution

Solve the equation
x=−11+25−yx=−11−25−y
Evaluate
y=−x2−22x−96
Swap the sides of the equation
−x2−22x−96=y
Move the expression to the left side
−x2−22x−96−y=0
Multiply both sides
x2+22x+96+y=0
Substitute a=1,b=22 and c=96+y into the quadratic formula x=2a−b±b2−4ac
x=2−22±222−4(96+y)
Simplify the expression
More Steps

Evaluate
222−4(96+y)
Multiply the terms
More Steps

Evaluate
4(96+y)
Apply the distributive property
4×96+4y
Multiply the numbers
384+4y
222−(384+4y)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
222−384−4y
Evaluate the power
484−384−4y
Subtract the numbers
100−4y
x=2−22±100−4y
Simplify the radical expression
More Steps

Evaluate
100−4y
Factor the expression
4(25−y)
The root of a product is equal to the product of the roots of each factor
4×25−y
Evaluate the root
More Steps

Evaluate
4
Write the number in exponential form with the base of 2
22
Reduce the index of the radical and exponent with 2
2
225−y
x=2−22±225−y
Separate the equation into 2 possible cases
x=2−22+225−yx=2−22−225−y
Simplify the expression
More Steps

Evaluate
x=2−22+225−y
Divide the terms
More Steps

Evaluate
2−22+225−y
Rewrite the expression
22(−11+25−y)
Reduce the fraction
−11+25−y
x=−11+25−y
x=−11+25−yx=2−22−225−y
Solution
More Steps

Evaluate
x=2−22−225−y
Divide the terms
More Steps

Evaluate
2−22−225−y
Rewrite the expression
22(−11−25−y)
Reduce the fraction
−11−25−y
x=−11−25−y
x=−11+25−yx=−11−25−y
Show Solution

Rewrite the equation
r=2cos2(θ)−sin(θ)−22cos(θ)+1+99cos2(θ)+22sin(2θ)r=−2cos2(θ)sin(θ)+22cos(θ)+1+99cos2(θ)+22sin(2θ)
Evaluate
y=−x2−22x−96
Move the expression to the left side
y+x2+22x=−96
To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ)
sin(θ)×r+(cos(θ)×r)2+22cos(θ)×r=−96
Factor the expression
cos2(θ)×r2+(sin(θ)+22cos(θ))r=−96
Subtract the terms
cos2(θ)×r2+(sin(θ)+22cos(θ))r−(−96)=−96−(−96)
Evaluate
cos2(θ)×r2+(sin(θ)+22cos(θ))r+96=0
Solve using the quadratic formula
r=2cos2(θ)−sin(θ)−22cos(θ)±(sin(θ)+22cos(θ))2−4cos2(θ)×96
Simplify
r=2cos2(θ)−sin(θ)−22cos(θ)±1+99cos2(θ)+22sin(2θ)
Separate the equation into 2 possible cases
r=2cos2(θ)−sin(θ)−22cos(θ)+1+99cos2(θ)+22sin(2θ)r=2cos2(θ)−sin(θ)−22cos(θ)−1+99cos2(θ)+22sin(2θ)
Solution
r=2cos2(θ)−sin(θ)−22cos(θ)+1+99cos2(θ)+22sin(2θ)r=−2cos2(θ)sin(θ)+22cos(θ)+1+99cos2(θ)+22sin(2θ)
Show Solution
