Question
Function
Find the vertex
Find the axis of symmetry
Rewrite in vertex form
Load more

(34,−3468)
Evaluate
y=3x2−12x×17
Simplify
y=3x2−204x
Find the x-coordinate of the vertex by substituting a=3 and b=−204 into x = −2ab
x=−2×3−204
Solve the equation for x
x=34
Find the y-coordinate of the vertex by evaluating the function for x=34
y=3×342−204×34
Calculate
More Steps

Evaluate
3×342−204×34
Multiply the terms
More Steps

Evaluate
3×342
Evaluate the power
3×1156
Multiply the numbers
3468
3468−204×34
Multiply the numbers
3468−6936
Subtract the numbers
−3468
y=−3468
Solution
(34,−3468)
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
y=3x2−12x17
Simplify the expression
y=3x2−204x
To test if the graph of y=3x2−204x is symmetry with respect to the origin,substitute -x for x and -y for y
−y=3(−x)2−204(−x)
Simplify
More Steps

Evaluate
3(−x)2−204(−x)
Multiply the terms
3x2−204(−x)
Multiply the numbers
3x2−(−204x)
Rewrite the expression
3x2+204x
−y=3x2+204x
Change the signs both sides
y=−3x2−204x
Solution
Not symmetry with respect to the origin
Show Solution

Identify the conic
Find the standard equation of the parabola
Find the vertex of the parabola
Find the focus of the parabola
Load more

(x−34)2=31(y+3468)
Evaluate
y=3x2−12x×17
Simplify
y=3x2−204x
Swap the sides of the equation
3x2−204x=y
Multiply both sides of the equation by 31
(3x2−204x)×31=y×31
Multiply the terms
More Steps

Evaluate
(3x2−204x)×31
Use the the distributive property to expand the expression
3x2×31−204x×31
Multiply the numbers
x2−204x×31
Multiply the numbers
x2−68x
x2−68x=y×31
Use the commutative property to reorder the terms
x2−68x=31y
To complete the square, the same value needs to be added to both sides
x2−68x+1156=31y+1156
Use a2−2ab+b2=(a−b)2 to factor the expression
(x−34)2=31y+1156
Solution
(x−34)2=31(y+3468)
Show Solution

Solve the equation
Solve for x
Solve for y
x=3102+10404+3yx=3102−10404+3y
Evaluate
y=3x2−12x×17
Simplify
y=3x2−204x
Swap the sides of the equation
3x2−204x=y
Move the expression to the left side
3x2−204x−y=0
Substitute a=3,b=−204 and c=−y into the quadratic formula x=2a−b±b2−4ac
x=2×3204±(−204)2−4×3(−y)
Simplify the expression
x=6204±(−204)2−4×3(−y)
Simplify the expression
More Steps

Evaluate
(−204)2−4×3(−y)
Multiply
More Steps

Multiply the terms
4×3(−y)
Rewrite the expression
−4×3y
Multiply the terms
−12y
(−204)2−(−12y)
Rewrite the expression
2042−(−12y)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
2042+12y
Evaluate the power
41616+12y
x=6204±41616+12y
Simplify the radical expression
More Steps

Evaluate
41616+12y
Factor the expression
12(3468+y)
The root of a product is equal to the product of the roots of each factor
12×3468+y
Evaluate the root
More Steps

Evaluate
12
Write the expression as a product where the root of one of the factors can be evaluated
4×3
Write the number in exponential form with the base of 2
22×3
The root of a product is equal to the product of the roots of each factor
22×3
Reduce the index of the radical and exponent with 2
23
23×3468+y
Calculate the product
More Steps

Evaluate
3×3468+y
The product of roots with the same index is equal to the root of the product
3(3468+y)
Calculate the product
10404+3y
210404+3y
x=6204±210404+3y
Separate the equation into 2 possible cases
x=6204+210404+3yx=6204−210404+3y
Simplify the expression
More Steps

Evaluate
x=6204+210404+3y
Divide the terms
More Steps

Evaluate
6204+210404+3y
Rewrite the expression
62(102+10404+3y)
Cancel out the common factor 2
3102+10404+3y
x=3102+10404+3y
x=3102+10404+3yx=6204−210404+3y
Solution
More Steps

Evaluate
x=6204−210404+3y
Divide the terms
More Steps

Evaluate
6204−210404+3y
Rewrite the expression
62(102−10404+3y)
Cancel out the common factor 2
3102−10404+3y
x=3102−10404+3y
x=3102+10404+3yx=3102−10404+3y
Show Solution

Rewrite the equation
r=0r=3cos2(θ)sin(θ)+204cos(θ)
Evaluate
y=3x2−12x×17
Simplify
y=3x2−204x
Move the expression to the left side
y−3x2+204x=0
To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ)
sin(θ)×r−3(cos(θ)×r)2+204cos(θ)×r=0
Factor the expression
−3cos2(θ)×r2+(sin(θ)+204cos(θ))r=0
Factor the expression
r(−3cos2(θ)×r+sin(θ)+204cos(θ))=0
When the product of factors equals 0,at least one factor is 0
r=0−3cos2(θ)×r+sin(θ)+204cos(θ)=0
Solution
More Steps

Factor the expression
−3cos2(θ)×r+sin(θ)+204cos(θ)=0
Subtract the terms
−3cos2(θ)×r+sin(θ)+204cos(θ)−(sin(θ)+204cos(θ))=0−(sin(θ)+204cos(θ))
Evaluate
−3cos2(θ)×r=−sin(θ)−204cos(θ)
Divide the terms
r=3cos2(θ)sin(θ)+204cos(θ)
r=0r=3cos2(θ)sin(θ)+204cos(θ)
Show Solution
