Question
Function
Evaluate the derivative
Find the domain
Find the x-intercept/zero
Load more

y′={x524,x<0−x524,x>0
Evaluate
y=7−(4×∣2x5∣x)×3
Simplify
More Steps

Evaluate
7−(4×∣2x5∣x)×3
Remove the parentheses
7−4×∣2x5∣x×3
Calculate the absolute value
7−4×2∣x5∣x×3
Multiply
More Steps

Multiply the terms
4×2∣x5∣x×3
Multiply the terms
12×2∣x5∣x
Cancel out the common factor 2
6×∣x5∣x
Multiply the terms
∣x5∣6x
7−∣x5∣6x
y=7−∣x5∣6x
Take the derivative of both sides
y′=dxd(7−∣x5∣6x)
Solution
y′={x524,x<0−x524,x>0
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
y=7−(4×∣2x5∣x)3
Simplify the expression
y=7−∣x5∣6x
To test if the graph of y=7−∣x5∣6x is symmetry with respect to the origin,substitute -x for x and -y for y
−y=7−(−x)56(−x)
Simplify
More Steps

Evaluate
7−(−x)56(−x)
Calculate the absolute value
7−∣−x5∣6(−x)
Multiply the numbers
7−∣−x5∣−6x
Use b−a=−ba=−ba to rewrite the fraction
7−(−∣−x5∣6x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
7+∣−x5∣6x
−y=7+∣−x5∣6x
Change the signs both sides
y=−7−∣−x5∣6x
Solution
Not symmetry with respect to the origin
Show Solution

Solve the equation
Solve for x
Solve for y
x=0x∈(−∞,0)∩x=−∣y−7∣46(y−7)3x∈(−∞,0)∩x=∣y−7∣46(y−7)3x∈[0,+∞)∩x=−∣y−7∣46(−y+7)3x∈[0,+∞)∩x=∣y−7∣46(−y+7)3
Evaluate
y=7−(4×∣2x5∣x)×3
Simplify
More Steps

Evaluate
7−(4×∣2x5∣x)×3
Remove the parentheses
7−4×∣2x5∣x×3
Calculate the absolute value
7−4×2∣x5∣x×3
Multiply
More Steps

Multiply the terms
4×2∣x5∣x×3
Multiply the terms
12×2∣x5∣x
Cancel out the common factor 2
6×∣x5∣x
Multiply the terms
∣x5∣6x
7−∣x5∣6x
y=7−∣x5∣6x
Swap the sides of the equation
7−∣x5∣6x=y
Move the constant to the right-hand side and change its sign
−∣x5∣6x=y−7
Multiply both sides of the equation by LCD
−∣x5∣6xx5=(y−7)x5
Simplify the equation
−6x=(y−7)x5
Move the expression to the left side
−6x−(y−7)x5=0
Calculate
−6x+(−y+7)x5=0
Separate the equation into 2 possible cases
−6x+(−y+7)x5=0,x5≥0−6x+(−y+7)(−x5)=0,x5<0
Solve the equation
More Steps

Evaluate
−6x+(−y+7)x5=0
Factor the expression
x(−6+(−y+7)x4)=0
Separate the equation into 2 possible cases
x=0−6+(−y+7)x4=0
Solve the equation
More Steps

Evaluate
−6+(−y+7)x4=0
Move the constant to the right-hand side and change its sign
(−y+7)x4=0+6
Removing 0 doesn't change the value,so remove it from the expression
(−y+7)x4=6
Divide both sides
−y+7(−y+7)x4=−y+76
Divide the numbers
x4=−y+76
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±4−y+76
Simplify the expression
x=±∣−y+7∣46(−y+7)3
Separate the equation into 2 possible cases
x=∣−y+7∣46(−y+7)3x=−∣−y+7∣46(−y+7)3
Calculate
x=∣−y+7∣4−6y3+126y2−882y+2058x=−∣−y+7∣46(−y+7)3
Calculate
x=∣−y+7∣4−6y3+126y2−882y+2058x=−∣−y+7∣4−6y3+126y2−882y+2058
x=0x=∣−y+7∣4−6y3+126y2−882y+2058x=−∣−y+7∣4−6y3+126y2−882y+2058
x=0x=∣−y+7∣4−6y3+126y2−882y+2058x=−∣−y+7∣4−6y3+126y2−882y+2058,x5≥0−6x+(−y+7)(−x5)=0,x5<0
The only way a base raised to an odd power can be greater than or equal to 0 is if the base is greater than or equal to 0
x=0x=∣−y+7∣4−6y3+126y2−882y+2058x=−∣−y+7∣4−6y3+126y2−882y+2058,x≥0−6x+(−y+7)(−x5)=0,x5<0
Solve the equation
More Steps

Evaluate
−6x+(−y+7)(−x5)=0
Calculate
−6x+(y−7)x5=0
Factor the expression
x(−6+(y−7)x4)=0
Separate the equation into 2 possible cases
x=0−6+(y−7)x4=0
Solve the equation
More Steps

Evaluate
−6+(y−7)x4=0
Move the constant to the right-hand side and change its sign
(y−7)x4=0+6
Removing 0 doesn't change the value,so remove it from the expression
(y−7)x4=6
Divide both sides
y−7(y−7)x4=y−76
Divide the numbers
x4=y−76
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±4y−76
Simplify the expression
x=±∣y−7∣46(y−7)3
Separate the equation into 2 possible cases
x=∣y−7∣46(y−7)3x=−∣y−7∣46(y−7)3
Calculate
x=∣y−7∣46y3−126y2+882y−2058x=−∣y−7∣46(y−7)3
Calculate
x=∣y−7∣46y3−126y2+882y−2058x=−∣y−7∣46y3−126y2+882y−2058
x=0x=∣y−7∣46y3−126y2+882y−2058x=−∣y−7∣46y3−126y2+882y−2058
x=0x=∣−y+7∣4−6y3+126y2−882y+2058x=−∣−y+7∣4−6y3+126y2−882y+2058,x≥0x=0x=∣y−7∣46y3−126y2+882y−2058x=−∣y−7∣46y3−126y2+882y−2058,x5<0
The only way a base raised to an odd power can be less than 0 is if the base is less than 0
x=0x=∣−y+7∣4−6y3+126y2−882y+2058x=−∣−y+7∣4−6y3+126y2−882y+2058,x≥0x=0x=∣y−7∣46y3−126y2+882y−2058x=−∣y−7∣46y3−126y2+882y−2058,x<0
Find the intersection
x=0x∈[0,+∞)∩x=−∣−y+7∣4−6y3+126y2−882y+2058x∈[0,+∞)∩x=∣−y+7∣4−6y3+126y2−882y+2058x=0x=∣y−7∣46y3−126y2+882y−2058x=−∣y−7∣46y3−126y2+882y−2058,x<0
Find the intersection
x=0x∈[0,+∞)∩x=−∣−y+7∣4−6y3+126y2−882y+2058x∈[0,+∞)∩x=∣−y+7∣4−6y3+126y2−882y+2058x∈(−∞,0)∩x=−∣y−7∣46y3−126y2+882y−2058∪x∈(−∞,0)∩x=∣y−7∣46y3−126y2+882y−2058
Find the union
x=0x∈(−∞,0)∩x=−∣y−7∣46y3−126y2+882y−2058x∈(−∞,0)∩x=∣y−7∣46y3−126y2+882y−2058x∈[0,+∞)∩x=−∣−y+7∣4−6y3+126y2−882y+2058x∈[0,+∞)∩x=∣−y+7∣4−6y3+126y2−882y+2058
Simplify
x=0x∈(−∞,0)∩x=−∣y−7∣46y3−126y2+882y−2058x∈(−∞,0)∩x=∣y−7∣46y3−126y2+882y−2058x∈[0,+∞)∩x=−∣−y+7∣4−6y3+126y2−882y+2058x∈[0,+∞)∩x=∣y−7∣46(−y+7)3
Simplify
x=0x∈(−∞,0)∩x=−∣y−7∣46y3−126y2+882y−2058x∈(−∞,0)∩x=∣y−7∣46y3−126y2+882y−2058x∈[0,+∞)∩x=−∣y−7∣46(−y+7)3x∈[0,+∞)∩x=∣y−7∣46(−y+7)3
Simplify
x=0x∈(−∞,0)∩x=−∣y−7∣46y3−126y2+882y−2058x∈(−∞,0)∩x=∣y−7∣46(y−7)3x∈[0,+∞)∩x=−∣y−7∣46(−y+7)3x∈[0,+∞)∩x=∣y−7∣46(−y+7)3
Solution
x=0x∈(−∞,0)∩x=−∣y−7∣46(y−7)3x∈(−∞,0)∩x=∣y−7∣46(y−7)3x∈[0,+∞)∩x=−∣y−7∣46(−y+7)3x∈[0,+∞)∩x=∣y−7∣46(−y+7)3
Show Solution
