Question Function Find the inverse Evaluate the derivative Find the domain Load more f−1(z)=arcsin(z) Evaluate y=sin(z)Interchange z and y z=sin(y)Swap the sides of the equation sin(y)=zUse the inverse trigonometric function y=arcsin(z)Calculate y=arcsin(z)y=−arcsin(z)+πAdd the period of 2kπ,k∈Z to find all solutions y=arcsin(z)+2kπ,k∈Zy=−arcsin(z)+π+2kπ,k∈ZFind the union y={arcsin(z)+2kπ−arcsin(z)+π+2kπ,k∈ZCalculate y=arcsin(z)Solution f−1(z)=arcsin(z) Show Solution Solve the equation z={arcsin(y)+2kπ−arcsin(y)+π+2kπ,k∈Z Evaluate y=sin(z)Swap the sides of the equation sin(z)=yUse the inverse trigonometric function z=arcsin(y)Calculate z=arcsin(y)z=−arcsin(y)+πAdd the period of 2kπ,k∈Z to find all solutions z=arcsin(y)+2kπ,k∈Zz=−arcsin(y)+π+2kπ,k∈ZSolution z={arcsin(y)+2kπ−arcsin(y)+π+2kπ,k∈Z Show Solution Graph