Question
Solve the equation
Solve for x
Solve for y
x=yy+2
Evaluate
y=xy−2
Rewrite the expression
y=yx−2
Swap the sides of the equation
yx−2=y
Move the constant to the right-hand side and change its sign
yx=y+2
Divide both sides
yyx=yy+2
Solution
x=yy+2
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
y=xy−2
To test if the graph of y=xy−2 is symmetry with respect to the origin,substitute -x for x and -y for y
−y=−x(−y)−2
Multiplying or dividing an even number of negative terms equals a positive
−y=xy−2
Solution
Not symmetry with respect to the origin
Show Solution

Rewrite the equation
r=sin(2θ)sin(θ)−sin2(θ)+4sin(2θ)r=sin(2θ)sin(θ)+sin2(θ)+4sin(2θ)
Evaluate
y=xy−2
Move the expression to the left side
y−xy=−2
To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ)
sin(θ)×r−cos(θ)×rsin(θ)×r=−2
Factor the expression
−cos(θ)sin(θ)×r2+sin(θ)×r=−2
Simplify the expression
−21sin(2θ)×r2+sin(θ)×r=−2
Subtract the terms
−21sin(2θ)×r2+sin(θ)×r−(−2)=−2−(−2)
Evaluate
−21sin(2θ)×r2+sin(θ)×r+2=0
Solve using the quadratic formula
r=−sin(2θ)−sin(θ)±sin2(θ)−4(−21sin(2θ))×2
Simplify
r=−sin(2θ)−sin(θ)±sin2(θ)+4sin(2θ)
Separate the equation into 2 possible cases
r=−sin(2θ)−sin(θ)+sin2(θ)+4sin(2θ)r=−sin(2θ)−sin(θ)−sin2(θ)+4sin(2θ)
Use b−a=−ba=−ba to rewrite the fraction
r=sin(2θ)sin(θ)−sin2(θ)+4sin(2θ)r=−sin(2θ)−sin(θ)−sin2(θ)+4sin(2θ)
Solution
r=sin(2θ)sin(θ)−sin2(θ)+4sin(2θ)r=sin(2θ)sin(θ)+sin2(θ)+4sin(2θ)
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=1−xy
Calculate
y=xy−2
Take the derivative of both sides
dxd(y)=dxd(xy−2)
Calculate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
dxdy=dxd(xy−2)
Calculate the derivative
More Steps

Evaluate
dxd(xy−2)
Use differentiation rules
dxd(xy)+dxd(−2)
Evaluate the derivative
More Steps

Evaluate
dxd(xy)
Use differentiation rules
dxd(x)×y+x×dxd(y)
Use dxdxn=nxn−1 to find derivative
y+x×dxd(y)
Evaluate the derivative
y+xdxdy
y+xdxdy+dxd(−2)
Use dxd(c)=0 to find derivative
y+xdxdy+0
Evaluate
y+xdxdy
dxdy=y+xdxdy
Move the variable to the left side
dxdy−xdxdy=y
Collect like terms by calculating the sum or difference of their coefficients
(1−x)dxdy=y
Divide both sides
1−x(1−x)dxdy=1−xy
Solution
dxdy=1−xy
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=1−2x+x22y
Calculate
y=xy−2
Take the derivative of both sides
dxd(y)=dxd(xy−2)
Calculate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
dxdy=dxd(xy−2)
Calculate the derivative
More Steps

Evaluate
dxd(xy−2)
Use differentiation rules
dxd(xy)+dxd(−2)
Evaluate the derivative
More Steps

Evaluate
dxd(xy)
Use differentiation rules
dxd(x)×y+x×dxd(y)
Use dxdxn=nxn−1 to find derivative
y+x×dxd(y)
Evaluate the derivative
y+xdxdy
y+xdxdy+dxd(−2)
Use dxd(c)=0 to find derivative
y+xdxdy+0
Evaluate
y+xdxdy
dxdy=y+xdxdy
Move the variable to the left side
dxdy−xdxdy=y
Collect like terms by calculating the sum or difference of their coefficients
(1−x)dxdy=y
Divide both sides
1−x(1−x)dxdy=1−xy
Divide the numbers
dxdy=1−xy
Take the derivative of both sides
dxd(dxdy)=dxd(1−xy)
Calculate the derivative
dx2d2y=dxd(1−xy)
Use differentiation rules
dx2d2y=(1−x)2dxd(y)×(1−x)−y×dxd(1−x)
Calculate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
dx2d2y=(1−x)2dxdy×(1−x)−y×dxd(1−x)
Calculate the derivative
More Steps

Evaluate
dxd(1−x)
Use differentiation rules
dxd(1)+dxd(−x)
Use dxd(c)=0 to find derivative
0+dxd(−x)
Evaluate the derivative
0−1
Evaluate
−1
dx2d2y=(1−x)2dxdy×(1−x)−y(−1)
Calculate
More Steps

Evaluate
dxdy×(1−x)
Apply the distributive property
dxdy×1−dxdy×x
Any expression multiplied by 1 remains the same
dxdy−dxdy×x
Use the commutative property to reorder the terms
dxdy−xdxdy
dx2d2y=(1−x)2dxdy−xdxdy−y(−1)
Multiplying or dividing an odd number of negative terms equals a negative
dx2d2y=(1−x)2dxdy−xdxdy−(−y)
Calculate
dx2d2y=(1−x)2dxdy−xdxdy+y
Use equation dxdy=1−xy to substitute
dx2d2y=(1−x)21−xy−x×1−xy+y
Solution
More Steps

Calculate
(1−x)21−xy−x×1−xy+y
Multiply the terms
(1−x)21−xy−1−xxy+y
Calculate the sum or difference
More Steps

Evaluate
1−xy−1−xxy+y
Reduce fractions to a common denominator
1−xy−1−xxy+1−xy(1−x)
Write all numerators above the common denominator
1−xy−xy+y(1−x)
Multiply the terms
1−xy−xy+y−yx
Calculate the sum or difference
1−x2y−2xy
Factor the expression
1−x2y(−x+1)
Rewrite the expression
−x+12y(−x+1)
Reduce the fraction
2y
(1−x)22y
Expand the expression
More Steps

Evaluate
(1−x)2
Use (a−b)2=a2−2ab+b2 to expand the expression
12−2×1×x+x2
Calculate
1−2x+x2
1−2x+x22y
dx2d2y=1−2x+x22y
Show Solution

Conic
4(x′−22)2−4(y′+22)2=1
Evaluate
y=xy−2
Move the expression to the left side
y−(xy−2)=0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
y−xy+2=0
The coefficients A,B and C of the general equation are A=0,B=−1 and C=0
A=0B=−1C=0
To find the angle of rotation θ,substitute the values of A,B and C into the formula cot(2θ)=BA−C
cot(2θ)=−10−0
Calculate
cot(2θ)=0
Using the unit circle,find the smallest positive angle for which the cotangent is 0
2θ=2π
Calculate
θ=4π
To rotate the axes,use the equation of rotation and substitute 4π for θ
x=x′cos(4π)−y′sin(4π)y=x′sin(4π)+y′cos(4π)
Calculate
x=x′×22−y′sin(4π)y=x′sin(4π)+y′cos(4π)
Calculate
x=x′×22−y′×22y=x′sin(4π)+y′cos(4π)
Calculate
x=x′×22−y′×22y=x′×22+y′cos(4π)
Calculate
x=x′×22−y′×22y=x′×22+y′×22
Substitute x and y into the original equation y−xy+2=0
x′×22+y′×22−(x′×22−y′×22)(x′×22+y′×22)+2=0
Calculate
More Steps

Calculate
x′×22+y′×22−(x′×22−y′×22)(x′×22+y′×22)+2
Use the commutative property to reorder the terms
22x′+y′×22−(x′×22−y′×22)(x′×22+y′×22)+2
Use the commutative property to reorder the terms
22x′+22y′−(x′×22−y′×22)(x′×22+y′×22)+2
Use the commutative property to reorder the terms
22x′+22y′−(22x′−y′×22)(x′×22+y′×22)+2
Use the commutative property to reorder the terms
22x′+22y′−(22x′−22y′)(x′×22+y′×22)+2
Use the commutative property to reorder the terms
22x′+22y′−(22x′−22y′)(22x′+y′×22)+2
Use the commutative property to reorder the terms
22x′+22y′−(22x′−22y′)(22x′+22y′)+2
Multiply the terms
22x′+22y′+(−22x′+22y′)(22x′+22y′)+2
Expand the expression
More Steps

Evaluate
(−22x′+22y′)(22x′+22y′)
Use the commutative property to reorder the terms
(22y′−22x′)(22x′+22y′)
Use the commutative property to reorder the terms
(22y′−22x′)(22y′+22x′)
Use (a−b)(a+b)=a2−b2 to simplify the product
(22y′)2−(22x′)2
Evaluate the power
21(y′)2−(22x′)2
Evaluate the power
21(y′)2−21(x′)2
22x′+22y′+21(y′)2−21(x′)2+2
22x′+22y′+21(y′)2−21(x′)2+2=0
Move the constant to the right-hand side and change its sign
22x′+22y′+21(y′)2−21(x′)2=0−2
Removing 0 doesn't change the value,so remove it from the expression
22x′+22y′+21(y′)2−21(x′)2=−2
Use the commutative property to reorder the terms
−21(x′)2+22x′+21(y′)2+22y′=−2
To complete the square, the same value needs to be subtract from both sides
−21(x′)2+22x′−41+21(y′)2+22y′=−2−41
Factor out −21 from the expression
−21((x′)2−2×x′+21)+21(y′)2+22y′=−2−41
Use a2−2ab+b2=(a−b)2 to factor the expression
−21(x′−22)2+21(y′)2+22y′=−2−41
Subtract the numbers
More Steps

Evaluate
−2−41
Reduce fractions to a common denominator
−42×4−41
Write all numerators above the common denominator
4−2×4−1
Multiply the numbers
4−8−1
Subtract the numbers
4−9
Use b−a=−ba=−ba to rewrite the fraction
−49
−21(x′−22)2+21(y′)2+22y′=−49
To complete the square, the same value needs to be added to both sides
−21(x′−22)2+21(y′)2+22y′+41=−49+41
Factor out 21 from the expression
−21(x′−22)2+21((y′)2+2×y′+21)=−49+41
Use a2+2ab+b2=(a+b)2 to factor the expression
−21(x′−22)2+21(y′+22)2=−49+41
Add the numbers
More Steps

Evaluate
−49+41
Write all numerators above the common denominator
4−9+1
Add the numbers
4−8
Reduce the numbers
1−2
Calculate
−2
−21(x′−22)2+21(y′+22)2=−2
Multiply both sides of the equation by −21
−21(x′−22)2+21(y′+22)2(−21)=−2(−21)
Multiply the terms
More Steps

Evaluate
−21(x′−22)2+21(y′+22)2(−21)
Use the the distributive property to expand the expression
−21(x′−22)2(−21)+21(y′+22)2(−21)
Multiply
More Steps

Evaluate
−21(x′−22)2(−21)
Rewrite the expression
21(x′−22)2×21
Multiply the terms
41(x′−22)2
41(x′−22)2+21(y′+22)2(−21)
Multiply
More Steps

Evaluate
21(y′+22)2(−21)
Rewrite the expression
−21(y′+22)2×21
Multiply the terms
−41(y′+22)2
41(x′−22)2−41(y′+22)2
41(x′−22)2−41(y′+22)2=−2(−21)
Multiply the terms
More Steps

Evaluate
−2(−21)
Multiplying or dividing an even number of negative terms equals a positive
2×21
Reduce the numbers
1×1
Simplify
1
41(x′−22)2−41(y′+22)2=1
Use a=a11 to transform the expression
4(x′−22)2−41(y′+22)2=1
Solution
4(x′−22)2−4(y′+22)2=1
Show Solution
