Question
Find the roots
y1=16−286,y2=16+286
Alternative Form
y1≈−0.911535,y2≈32.911535
Evaluate
y2−32y−30
To find the roots of the expression,set the expression equal to 0
y2−32y−30=0
Substitute a=1,b=−32 and c=−30 into the quadratic formula y=2a−b±b2−4ac
y=232±(−32)2−4(−30)
Simplify the expression
More Steps

Evaluate
(−32)2−4(−30)
Multiply the numbers
More Steps

Evaluate
4(−30)
Multiplying or dividing an odd number of negative terms equals a negative
−4×30
Multiply the numbers
−120
(−32)2−(−120)
Rewrite the expression
322−(−120)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
322+120
Evaluate the power
1024+120
Add the numbers
1144
y=232±1144
Simplify the radical expression
More Steps

Evaluate
1144
Write the expression as a product where the root of one of the factors can be evaluated
4×286
Write the number in exponential form with the base of 2
22×286
The root of a product is equal to the product of the roots of each factor
22×286
Reduce the index of the radical and exponent with 2
2286
y=232±2286
Separate the equation into 2 possible cases
y=232+2286y=232−2286
Simplify the expression
More Steps

Evaluate
y=232+2286
Divide the terms
More Steps

Evaluate
232+2286
Rewrite the expression
22(16+286)
Reduce the fraction
16+286
y=16+286
y=16+286y=232−2286
Simplify the expression
More Steps

Evaluate
y=232−2286
Divide the terms
More Steps

Evaluate
232−2286
Rewrite the expression
22(16−286)
Reduce the fraction
16−286
y=16−286
y=16+286y=16−286
Solution
y1=16−286,y2=16+286
Alternative Form
y1≈−0.911535,y2≈32.911535
Show Solution
