Question
Solve the equation
Solve for x
Solve for y
x=234y+4−y2+128x=234y−4−y2+128
Evaluate
y2=−2(x6−x3y−32)
Rewrite the expression
y2=−2(x6−yx3−32)
Swap the sides of the equation
−2(x6−yx3−32)=y2
Change the sign
2(x6−yx3−32)=−y2
Divide both sides
22(x6−yx3−32)=2−y2
Divide the numbers
x6−yx3−32=2−y2
Use b−a=−ba=−ba to rewrite the fraction
x6−yx3−32=−2y2
Move the expression to the left side
x6−yx3−32−(−2y2)=0
Subtract the terms
More Steps

Evaluate
−32−(−2y2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−32+2y2
Reduce fractions to a common denominator
−232×2+2y2
Write all numerators above the common denominator
2−32×2+y2
Multiply the numbers
2−64+y2
x6−yx3+2−64+y2=0
Multiply both sides of the equation by LCD
(x6−yx3+2−64+y2)×2=0×2
Simplify the equation
More Steps

Evaluate
(x6−yx3+2−64+y2)×2
Apply the distributive property
x6×2−yx3×2+2−64+y2×2
Simplify
x6×2−yx3×2−64+y2
Use the commutative property to reorder the terms
2x6−yx3×2−64+y2
Multiply the terms
2x6−2yx3−64+y2
2x6−2yx3−64+y2=0×2
Any expression multiplied by 0 equals 0
2x6−2yx3−64+y2=0
Solve the equation using substitution t=x3
2t2−2yt−64+y2=0
Substitute a=2,b=−2y and c=−64+y2 into the quadratic formula t=2a−b±b2−4ac
t=2×22y±(−2y)2−4×2(−64+y2)
Simplify the expression
t=42y±(−2y)2−4×2(−64+y2)
Simplify the expression
More Steps

Evaluate
(−2y)2−4×2(−64+y2)
Multiply the terms
More Steps

Multiply the terms
4×2(−64+y2)
Multiply the terms
8(−64+y2)
Apply the distributive property
−8×64+8y2
Multiply the numbers
−512+8y2
(−2y)2−(−512+8y2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
(−2y)2+512−8y2
Subtract the terms
More Steps

Evaluate
(−2y)2−8y2
Rewrite the expression
4y2−8y2
Factor the expression
(4−8)y2
Subtract the terms
−4y2
−4y2+512
t=42y±−4y2+512
Simplify the radical expression
More Steps

Evaluate
−4y2+512
Factor the expression
4(−y2+128)
The root of a product is equal to the product of the roots of each factor
4×−y2+128
Evaluate the root
More Steps

Evaluate
4
Write the number in exponential form with the base of 2
22
Reduce the index of the radical and exponent with 2
2
2−y2+128
t=42y±2−y2+128
Separate the equation into 2 possible cases
t=42y+2−y2+128t=42y−2−y2+128
Simplify the expression
More Steps

Evaluate
t=42y+2−y2+128
Divide the terms
More Steps

Evaluate
42y+2−y2+128
Rewrite the expression
42(y+−y2+128)
Cancel out the common factor 2
2y+−y2+128
t=2y+−y2+128
t=2y+−y2+128t=42y−2−y2+128
Simplify the expression
More Steps

Evaluate
t=42y−2−y2+128
Divide the terms
More Steps

Evaluate
42y−2−y2+128
Rewrite the expression
42(y−−y2+128)
Cancel out the common factor 2
2y−−y2+128
t=2y−−y2+128
t=2y+−y2+128t=2y−−y2+128
Substitute back
x3=2y+−y2+128x3=2y−−y2+128
Solve the equation for x
More Steps

Substitute back
x3=2y+−y2+128
Take the 3-th root on both sides of the equation
3x3=32y+−y2+128
Calculate
x=32y+−y2+128
Simplify the root
More Steps

Evaluate
32y+−y2+128
To take a root of a fraction,take the root of the numerator and denominator separately
323y+−y2+128
Multiply by the Conjugate
32×3223y+−y2+128×322
Calculate
23y+−y2+128×322
Calculate
234y+4−y2+128
x=234y+4−y2+128
x=234y+4−y2+128x3=2y−−y2+128
Solution
More Steps

Substitute back
x3=2y−−y2+128
Take the 3-th root on both sides of the equation
3x3=32y−−y2+128
Calculate
x=32y−−y2+128
Simplify the root
More Steps

Evaluate
32y−−y2+128
To take a root of a fraction,take the root of the numerator and denominator separately
323y−−y2+128
Multiply by the Conjugate
32×3223y−−y2+128×322
Calculate
23y−−y2+128×322
Calculate
234y−4−y2+128
x=234y−4−y2+128
x=234y+4−y2+128x=234y−4−y2+128
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Symmetry with respect to the origin
Evaluate
y2=−2(x6−x3y−32)
To test if the graph of y2=−2(x6−x3y−32) is symmetry with respect to the origin,substitute -x for x and -y for y
(−y)2=−2((−x)6−(−x)3(−y)−32)
Evaluate
y2=−2((−x)6−(−x)3(−y)−32)
Evaluate
More Steps

Evaluate
−2((−x)6−(−x)3(−y)−32)
Multiply the terms
More Steps

Evaluate
−(−x)3(−y)
Rewrite the expression
x3(−y)
Use the commutative property to reorder the terms
−x3y
−2((−x)6−x3y−32)
Rewrite the expression
−2(x6−x3y−32)
y2=−2(x6−x3y−32)
Solution
Symmetry with respect to the origin
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=y−x3−6x5+3yx2
Calculate
y2=−2(x6−x3y−32)
Take the derivative of both sides
dxd(y2)=dxd(−2(x6−x3y−32))
Calculate the derivative
More Steps

Evaluate
dxd(y2)
Use differentiation rules
dyd(y2)×dxdy
Use dxdxn=nxn−1 to find derivative
2ydxdy
2ydxdy=dxd(−2(x6−x3y−32))
Calculate the derivative
More Steps

Evaluate
dxd(−2(x6−x3y−32))
Simplify
−2×dxd(x6−x3y−32)
Rewrite the expression
−2(6x5−3x2y−x3dxdy)
Use the the distributive property to expand the expression
−2×6x5−2(−3x2y−x3dxdy)
Multiply the numbers
−12x5−2(−3x2y−x3dxdy)
Multiply the terms
More Steps

Evaluate
−2(−3x2y−x3dxdy)
Apply the distributive property
−2(−3x2y)−(−2x3dxdy)
Multiply the numbers
6x2y−(−2x3dxdy)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
6x2y+2x3dxdy
−12x5+6x2y+2x3dxdy
2ydxdy=−12x5+6x2y+2x3dxdy
Move the variable to the left side
2ydxdy−2x3dxdy=−12x5+6x2y
Collect like terms by calculating the sum or difference of their coefficients
(2y−2x3)dxdy=−12x5+6x2y
Divide both sides
2y−2x3(2y−2x3)dxdy=2y−2x3−12x5+6x2y
Divide the numbers
dxdy=2y−2x3−12x5+6x2y
Solution
More Steps

Evaluate
2y−2x3−12x5+6x2y
Rewrite the expression
2y−2x32(−6x5+3yx2)
Rewrite the expression
2(y−x3)2(−6x5+3yx2)
Reduce the fraction
y−x3−6x5+3yx2
dxdy=y−x3−6x5+3yx2
Show Solution

Find the second derivative
dx2d2y=y3−3y2x3+3yx6−x9−33y2x4+48x7y−30x10+6y3x
Calculate
y2=−2(x6−x3y−32)
Take the derivative of both sides
dxd(y2)=dxd(−2(x6−x3y−32))
Calculate the derivative
More Steps

Evaluate
dxd(y2)
Use differentiation rules
dyd(y2)×dxdy
Use dxdxn=nxn−1 to find derivative
2ydxdy
2ydxdy=dxd(−2(x6−x3y−32))
Calculate the derivative
More Steps

Evaluate
dxd(−2(x6−x3y−32))
Simplify
−2×dxd(x6−x3y−32)
Rewrite the expression
−2(6x5−3x2y−x3dxdy)
Use the the distributive property to expand the expression
−2×6x5−2(−3x2y−x3dxdy)
Multiply the numbers
−12x5−2(−3x2y−x3dxdy)
Multiply the terms
More Steps

Evaluate
−2(−3x2y−x3dxdy)
Apply the distributive property
−2(−3x2y)−(−2x3dxdy)
Multiply the numbers
6x2y−(−2x3dxdy)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
6x2y+2x3dxdy
−12x5+6x2y+2x3dxdy
2ydxdy=−12x5+6x2y+2x3dxdy
Move the variable to the left side
2ydxdy−2x3dxdy=−12x5+6x2y
Collect like terms by calculating the sum or difference of their coefficients
(2y−2x3)dxdy=−12x5+6x2y
Divide both sides
2y−2x3(2y−2x3)dxdy=2y−2x3−12x5+6x2y
Divide the numbers
dxdy=2y−2x3−12x5+6x2y
Divide the numbers
More Steps

Evaluate
2y−2x3−12x5+6x2y
Rewrite the expression
2y−2x32(−6x5+3yx2)
Rewrite the expression
2(y−x3)2(−6x5+3yx2)
Reduce the fraction
y−x3−6x5+3yx2
dxdy=y−x3−6x5+3yx2
Take the derivative of both sides
dxd(dxdy)=dxd(y−x3−6x5+3yx2)
Calculate the derivative
dx2d2y=dxd(y−x3−6x5+3yx2)
Use differentiation rules
dx2d2y=(y−x3)2dxd(−6x5+3yx2)×(y−x3)−(−6x5+3yx2)×dxd(y−x3)
Calculate the derivative
More Steps

Evaluate
dxd(−6x5+3yx2)
Use differentiation rules
dxd(−6x5)+dxd(3yx2)
Evaluate the derivative
−30x4+dxd(3yx2)
Evaluate the derivative
−30x4+6xy+3x2dxdy
dx2d2y=(y−x3)2(−30x4+6xy+3x2dxdy)(y−x3)−(−6x5+3yx2)×dxd(y−x3)
Calculate the derivative
More Steps

Evaluate
dxd(y−x3)
Use differentiation rules
dxd(y)+dxd(−x3)
Evaluate the derivative
dxdy+dxd(−x3)
Evaluate the derivative
dxdy−3x2
dx2d2y=(y−x3)2(−30x4+6xy+3x2dxdy)(y−x3)−(−6x5+3yx2)(dxdy−3x2)
Calculate
More Steps

Evaluate
(−30x4+6xy+3x2dxdy)(y−x3)
Use the the distributive property to expand the expression
−30x4(y−x3)+(6xy+3x2dxdy)(y−x3)
Multiply the terms
−30x4y+30x7+(6xy+3x2dxdy)(y−x3)
Multiply the terms
−30x4y+30x7+6xy2−6x4y+3x2ydxdy−3x5dxdy
Calculate
−36x4y+30x7+6xy2+3x2ydxdy−3x5dxdy
dx2d2y=(y−x3)2−36x4y+30x7+6xy2+3x2ydxdy−3x5dxdy−(−6x5+3yx2)(dxdy−3x2)
Calculate
More Steps

Evaluate
(−6x5+3yx2)(dxdy−3x2)
Use the the distributive property to expand the expression
(−6x5+3yx2)dxdy+(−6x5+3yx2)(−3x2)
Apply the distributive property
−6x5dxdy+3yx2dxdy+(−6x5+3yx2)(−3x2)
Multiply the terms
−6x5dxdy+3yx2dxdy+18x7−9yx4
dx2d2y=(y−x3)2−36x4y+30x7+6xy2+3x2ydxdy−3x5dxdy−(−6x5dxdy+3yx2dxdy+18x7−9yx4)
Calculate
More Steps

Calculate
−36x4y+30x7+6xy2+3x2ydxdy−3x5dxdy−(−6x5dxdy+3yx2dxdy+18x7−9yx4)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−36x4y+30x7+6xy2+3x2ydxdy−3x5dxdy+6x5dxdy−3yx2dxdy−18x7+9yx4
Add the terms
−27x4y+30x7+6xy2+3x2ydxdy−3x5dxdy+6x5dxdy−3yx2dxdy−18x7
Subtract the terms
−27x4y+12x7+6xy2+3x2ydxdy−3x5dxdy+6x5dxdy−3yx2dxdy
Subtract the terms
−27x4y+12x7+6xy2+0−3x5dxdy+6x5dxdy
Removing 0 doesn't change the value,so remove it from the expression
−27x4y+12x7+6xy2−3x5dxdy+6x5dxdy
Add the terms
−27x4y+12x7+6xy2+3x5dxdy
dx2d2y=(y−x3)2−27x4y+12x7+6xy2+3x5dxdy
Use equation dxdy=y−x3−6x5+3yx2 to substitute
dx2d2y=(y−x3)2−27x4y+12x7+6xy2+3x5×y−x3−6x5+3yx2
Solution
More Steps

Calculate
(y−x3)2−27x4y+12x7+6xy2+3x5×y−x3−6x5+3yx2
Multiply the terms
(y−x3)2−27x4y+12x7+6xy2+y−x33x5(−6x5+3yx2)
Add the terms
More Steps

Evaluate
−27x4y+12x7+6xy2+y−x33x5(−6x5+3yx2)
Reduce fractions to a common denominator
−y−x327x4y(y−x3)+y−x312x7(y−x3)+y−x36xy2(y−x3)+y−x33x5(−6x5+3yx2)
Write all numerators above the common denominator
y−x3−27x4y(y−x3)+12x7(y−x3)+6xy2(y−x3)+3x5(−6x5+3yx2)
Multiply the terms
y−x3−(27y2x4−27x7y)+12x7(y−x3)+6xy2(y−x3)+3x5(−6x5+3yx2)
Multiply the terms
y−x3−(27y2x4−27x7y)+12yx7−12x10+6xy2(y−x3)+3x5(−6x5+3yx2)
Multiply the terms
y−x3−(27y2x4−27x7y)+12yx7−12x10+6y3x−6x4y2+3x5(−6x5+3yx2)
Multiply the terms
y−x3−(27y2x4−27x7y)+12yx7−12x10+6y3x−6x4y2−18x10+9yx7
Calculate the sum or difference
y−x3−33y2x4+48x7y−30x10+6y3x
(y−x3)2y−x3−33y2x4+48x7y−30x10+6y3x
Multiply by the reciprocal
y−x3−33y2x4+48x7y−30x10+6y3x×(y−x3)21
Multiply the terms
(y−x3)(y−x3)2−33y2x4+48x7y−30x10+6y3x
Multiply the terms
(y−x3)3−33y2x4+48x7y−30x10+6y3x
Expand the expression
More Steps

Evaluate
(y−x3)3
Use (a−b)3=a3−3a2b+3ab2−b3 to expand the expression
y3−3y2x3+3y(x3)2−(x3)3
Calculate
y3−3y2x3+3yx6−x9
y3−3y2x3+3yx6−x9−33y2x4+48x7y−30x10+6y3x
dx2d2y=y3−3y2x3+3yx6−x9−33y2x4+48x7y−30x10+6y3x
Show Solution
