Question
Identify the conic
Find the standard equation of the parabola
Find the vertex of the parabola
Find the focus of the parabola
Load more

(y−1)2=48(x−2425)
Evaluate
y2−4×2−2y−48x+59=0
Simplify
More Steps

Evaluate
y2−4×2−2y−48x+59
Multiply the numbers
y2−8−2y−48x+59
Add the numbers
y2+51−2y−48x
y2+51−2y−48x=0
Move the expression to the right-hand side and change its sign
y2−2y=0−(51−48x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
y2−2y=0−51+48x
Removing 0 doesn't change the value,so remove it from the expression
y2−2y=−51+48x
Use the commutative property to reorder the terms
y2−2y=48x−51
To complete the square, the same value needs to be added to both sides
y2−2y+1=48x−51+1
Use a2−2ab+b2=(a−b)2 to factor the expression
(y−1)2=48x−51+1
Add the numbers
(y−1)2=48x−50
Solution
(y−1)2=48(x−2425)
Show Solution

Solve the equation
Solve for x
Solve for y
x=48y2+51−2y
Evaluate
y2−4×2−2y−48x+59=0
Simplify
More Steps

Evaluate
y2−4×2−2y−48x+59
Multiply the numbers
y2−8−2y−48x+59
Add the numbers
y2+51−2y−48x
y2+51−2y−48x=0
Move the expression to the right-hand side and change its sign
−48x=0−(y2+51−2y)
Subtract the terms
More Steps

Evaluate
0−(y2+51−2y)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
0−y2−51+2y
Removing 0 doesn't change the value,so remove it from the expression
−y2−51+2y
−48x=−y2−51+2y
Change the signs on both sides of the equation
48x=y2+51−2y
Divide both sides
4848x=48y2+51−2y
Solution
x=48y2+51−2y
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
y2−4⋅2−2y−48x+59=0
Simplify the expression
y2+51−2y−48x=0
To test if the graph of y2−4⋅2−2y−48x+59=0 is symmetry with respect to the origin,substitute -x for x and -y for y
(−y)2+51−2(−y)−48(−x)=0
Evaluate
More Steps

Evaluate
(−y)2+51−2(−y)−48(−x)
Multiply the numbers
(−y)2+51+2y−48(−x)
Multiply the numbers
(−y)2+51+2y+48x
Rewrite the expression
y2+51+2y+48x
y2+51+2y+48x=0
Solution
Not symmetry with respect to the origin
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=y−124
Calculate
y2−4⋅2−2y−48x+59=0
Simplify the expression
y2+51−2y−48x=0
Take the derivative of both sides
dxd(y2+51−2y−48x)=dxd(0)
Calculate the derivative
More Steps

Evaluate
dxd(y2+51−2y−48x)
Use differentiation rules
dxd(y2)+dxd(51)+dxd(−2y)+dxd(−48x)
Evaluate the derivative
More Steps

Evaluate
dxd(y2)
Use differentiation rules
dyd(y2)×dxdy
Use dxdxn=nxn−1 to find derivative
2ydxdy
2ydxdy+dxd(51)+dxd(−2y)+dxd(−48x)
Use dxd(c)=0 to find derivative
2ydxdy+0+dxd(−2y)+dxd(−48x)
Evaluate the derivative
More Steps

Evaluate
dxd(−2y)
Use differentiation rules
dyd(−2y)×dxdy
Evaluate the derivative
−2dxdy
2ydxdy+0−2dxdy+dxd(−48x)
Evaluate the derivative
More Steps

Evaluate
dxd(−48x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
−48×dxd(x)
Use dxdxn=nxn−1 to find derivative
−48×1
Any expression multiplied by 1 remains the same
−48
2ydxdy+0−2dxdy−48
Evaluate
2ydxdy−2dxdy−48
2ydxdy−2dxdy−48=dxd(0)
Calculate the derivative
2ydxdy−2dxdy−48=0
Collect like terms by calculating the sum or difference of their coefficients
(2y−2)dxdy−48=0
Move the constant to the right side
(2y−2)dxdy=0+48
Removing 0 doesn't change the value,so remove it from the expression
(2y−2)dxdy=48
Divide both sides
2y−2(2y−2)dxdy=2y−248
Divide the numbers
dxdy=2y−248
Solution
More Steps

Evaluate
2y−248
Rewrite the expression
2(y−1)48
Cancel out the common factor 2
y−124
dxdy=y−124
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=−y3−3y2+3y−1576
Calculate
y2−4⋅2−2y−48x+59=0
Simplify the expression
y2+51−2y−48x=0
Take the derivative of both sides
dxd(y2+51−2y−48x)=dxd(0)
Calculate the derivative
More Steps

Evaluate
dxd(y2+51−2y−48x)
Use differentiation rules
dxd(y2)+dxd(51)+dxd(−2y)+dxd(−48x)
Evaluate the derivative
More Steps

Evaluate
dxd(y2)
Use differentiation rules
dyd(y2)×dxdy
Use dxdxn=nxn−1 to find derivative
2ydxdy
2ydxdy+dxd(51)+dxd(−2y)+dxd(−48x)
Use dxd(c)=0 to find derivative
2ydxdy+0+dxd(−2y)+dxd(−48x)
Evaluate the derivative
More Steps

Evaluate
dxd(−2y)
Use differentiation rules
dyd(−2y)×dxdy
Evaluate the derivative
−2dxdy
2ydxdy+0−2dxdy+dxd(−48x)
Evaluate the derivative
More Steps

Evaluate
dxd(−48x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
−48×dxd(x)
Use dxdxn=nxn−1 to find derivative
−48×1
Any expression multiplied by 1 remains the same
−48
2ydxdy+0−2dxdy−48
Evaluate
2ydxdy−2dxdy−48
2ydxdy−2dxdy−48=dxd(0)
Calculate the derivative
2ydxdy−2dxdy−48=0
Collect like terms by calculating the sum or difference of their coefficients
(2y−2)dxdy−48=0
Move the constant to the right side
(2y−2)dxdy=0+48
Removing 0 doesn't change the value,so remove it from the expression
(2y−2)dxdy=48
Divide both sides
2y−2(2y−2)dxdy=2y−248
Divide the numbers
dxdy=2y−248
Divide the numbers
More Steps

Evaluate
2y−248
Rewrite the expression
2(y−1)48
Cancel out the common factor 2
y−124
dxdy=y−124
Take the derivative of both sides
dxd(dxdy)=dxd(y−124)
Calculate the derivative
dx2d2y=dxd(y−124)
Use differentiation rules
dx2d2y=24×dxd(y−11)
Rewrite the expression in exponential form
dx2d2y=24×dxd((y−1)−1)
Calculate the derivative
More Steps

Evaluate
dxd((y−1)−1)
Evaluate the derivative
−(y−1)−2×dxd(y−1)
Evaluate the derivative
−(y−1)−2dxdy
Use the commutative property to reorder the terms
−dxdy×(y−1)−2
dx2d2y=24(−dxdy×(y−1)−2)
Rewrite the expression
dx2d2y=24(−(y−1)2dxdy)
Calculate
dx2d2y=−(y−1)224dxdy
Use equation dxdy=y−124 to substitute
dx2d2y=−(y−1)224×y−124
Solution
More Steps

Calculate
−(y−1)224×y−124
Multiply the terms
More Steps

Multiply the terms
24×y−124
Multiply the terms
y−124×24
Multiply the terms
y−1576
−(y−1)2y−1576
Divide the terms
More Steps

Evaluate
(y−1)2y−1576
Multiply by the reciprocal
y−1576×(y−1)21
Multiply the terms
(y−1)(y−1)2576
Multiply the terms
(y−1)3576
−(y−1)3576
Expand the expression
More Steps

Evaluate
(y−1)3
Use (a−b)3=a3−3a2b+3ab2−b3 to expand the expression
y3−3y2×1+3y×12−13
Calculate
y3−3y2+3y−1
−y3−3y2+3y−1576
dx2d2y=−y3−3y2+3y−1576
Show Solution

Rewrite the equation
r=sin2(θ)sin(θ)+24cos(θ)+−50+626cos2(θ)+24sin(2θ)r=sin2(θ)sin(θ)+24cos(θ)−−50+626cos2(θ)+24sin(2θ)
Evaluate
y2−4×2−2y−48x+59=0
Evaluate
More Steps

Evaluate
y2−4×2−2y−48x+59
Multiply the numbers
y2−8−2y−48x+59
Add the numbers
y2+51−2y−48x
y2+51−2y−48x=0
To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ)
(sin(θ)×r)2+51−2sin(θ)×r−48cos(θ)×r=0
Factor the expression
sin2(θ)×r2+(−2sin(θ)−48cos(θ))r+51=0
Solve using the quadratic formula
r=2sin2(θ)2sin(θ)+48cos(θ)±(−2sin(θ)−48cos(θ))2−4sin2(θ)×51
Simplify
r=2sin2(θ)2sin(θ)+48cos(θ)±−200+2504cos2(θ)+96sin(2θ)
Separate the equation into 2 possible cases
r=2sin2(θ)2sin(θ)+48cos(θ)+−200+2504cos2(θ)+96sin(2θ)r=2sin2(θ)2sin(θ)+48cos(θ)−−200+2504cos2(θ)+96sin(2θ)
Evaluate
More Steps

Evaluate
2sin2(θ)2sin(θ)+48cos(θ)+−200+2504cos2(θ)+96sin(2θ)
Simplify the root
More Steps

Evaluate
−200+2504cos2(θ)+96sin(2θ)
Factor the expression
8(−25+313cos2(θ)+12sin(2θ))
Write the expression as a product where the root of one of the factors can be evaluated
4×2(−25+313cos2(θ)+12sin(2θ))
Write the number in exponential form with the base of 2
22×2(−25+313cos2(θ)+12sin(2θ))
Calculate
22(−25+313cos2(θ)+12sin(2θ))
Calculate
2−50+626cos2(θ)+24sin(2θ)
2sin2(θ)2sin(θ)+48cos(θ)+2−50+626cos2(θ)+24sin(2θ)
Factor
2sin2(θ)2(sin(θ)+24cos(θ)+−50+626cos2(θ)+24sin(2θ))
Reduce the fraction
sin2(θ)sin(θ)+24cos(θ)+−50+626cos2(θ)+24sin(2θ)
r=sin2(θ)sin(θ)+24cos(θ)+−50+626cos2(θ)+24sin(2θ)r=2sin2(θ)2sin(θ)+48cos(θ)−−200+2504cos2(θ)+96sin(2θ)
Solution
More Steps

Evaluate
2sin2(θ)2sin(θ)+48cos(θ)−−200+2504cos2(θ)+96sin(2θ)
Simplify the root
More Steps

Evaluate
−200+2504cos2(θ)+96sin(2θ)
Factor the expression
8(−25+313cos2(θ)+12sin(2θ))
Write the expression as a product where the root of one of the factors can be evaluated
4×2(−25+313cos2(θ)+12sin(2θ))
Write the number in exponential form with the base of 2
22×2(−25+313cos2(θ)+12sin(2θ))
Calculate
22(−25+313cos2(θ)+12sin(2θ))
Calculate
2−50+626cos2(θ)+24sin(2θ)
2sin2(θ)2sin(θ)+48cos(θ)−2−50+626cos2(θ)+24sin(2θ)
Factor
2sin2(θ)2(sin(θ)+24cos(θ)−−50+626cos2(θ)+24sin(2θ))
Reduce the fraction
sin2(θ)sin(θ)+24cos(θ)−−50+626cos2(θ)+24sin(2θ)
r=sin2(θ)sin(θ)+24cos(θ)+−50+626cos2(θ)+24sin(2θ)r=sin2(θ)sin(θ)+24cos(θ)−−50+626cos2(θ)+24sin(2θ)
Show Solution
