Question
Find the roots
y1=5−579,y2=5+579
Alternative Form
y1≈−39.440972,y2≈49.440972
Evaluate
y2−10y−1950
To find the roots of the expression,set the expression equal to 0
y2−10y−1950=0
Substitute a=1,b=−10 and c=−1950 into the quadratic formula y=2a−b±b2−4ac
y=210±(−10)2−4(−1950)
Simplify the expression
More Steps

Evaluate
(−10)2−4(−1950)
Multiply the numbers
More Steps

Evaluate
4(−1950)
Multiplying or dividing an odd number of negative terms equals a negative
−4×1950
Multiply the numbers
−7800
(−10)2−(−7800)
Rewrite the expression
102−(−7800)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
102+7800
Evaluate the power
100+7800
Add the numbers
7900
y=210±7900
Simplify the radical expression
More Steps

Evaluate
7900
Write the expression as a product where the root of one of the factors can be evaluated
100×79
Write the number in exponential form with the base of 10
102×79
The root of a product is equal to the product of the roots of each factor
102×79
Reduce the index of the radical and exponent with 2
1079
y=210±1079
Separate the equation into 2 possible cases
y=210+1079y=210−1079
Simplify the expression
More Steps

Evaluate
y=210+1079
Divide the terms
More Steps

Evaluate
210+1079
Rewrite the expression
22(5+579)
Reduce the fraction
5+579
y=5+579
y=5+579y=210−1079
Simplify the expression
More Steps

Evaluate
y=210−1079
Divide the terms
More Steps

Evaluate
210−1079
Rewrite the expression
22(5−579)
Reduce the fraction
5−579
y=5−579
y=5+579y=5−579
Solution
y1=5−579,y2=5+579
Alternative Form
y1≈−39.440972,y2≈49.440972
Show Solution
