Question
Solve the equation
Solve for x
Solve for y
x=∣y∣×1−y2x=−∣y∣×1−y2
Evaluate
y4=y2−x2
Swap the sides of the equation
y2−x2=y4
Move the expression to the right-hand side and change its sign
−x2=y4−y2
Change the signs on both sides of the equation
x2=−y4+y2
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±−y4+y2
Simplify the expression
More Steps

Evaluate
−y4+y2
Factor the expression
y2(1−y2)
The root of a product is equal to the product of the roots of each factor
y2×1−y2
Reduce the index of the radical and exponent with 2
∣y∣×1−y2
x=±(∣y∣×1−y2)
Solution
x=∣y∣×1−y2x=−∣y∣×1−y2
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Symmetry with respect to the origin
Evaluate
y4=y2−x2
To test if the graph of y4=y2−x2 is symmetry with respect to the origin,substitute -x for x and -y for y
(−y)4=(−y)2−(−x)2
Evaluate
y4=(−y)2−(−x)2
Evaluate
More Steps

Evaluate
(−y)2−(−x)2
Rewrite the expression
y2−(−x)2
Rewrite the expression
y2−x2
y4=y2−x2
Solution
Symmetry with respect to the origin
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=−2y3−yx
Calculate
y4=y2−x2
Take the derivative of both sides
dxd(y4)=dxd(y2−x2)
Calculate the derivative
More Steps

Evaluate
dxd(y4)
Use differentiation rules
dyd(y4)×dxdy
Use dxdxn=nxn−1 to find derivative
4y3dxdy
4y3dxdy=dxd(y2−x2)
Calculate the derivative
More Steps

Evaluate
dxd(y2−x2)
Use differentiation rules
dxd(y2)+dxd(−x2)
Evaluate the derivative
More Steps

Evaluate
dxd(y2)
Use differentiation rules
dyd(y2)×dxdy
Use dxdxn=nxn−1 to find derivative
2ydxdy
2ydxdy+dxd(−x2)
Evaluate the derivative
More Steps

Evaluate
dxd(−x2)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
−dxd(x2)
Use dxdxn=nxn−1 to find derivative
−2x
2ydxdy−2x
4y3dxdy=2ydxdy−2x
Move the variable to the left side
4y3dxdy−2ydxdy=−2x
Collect like terms by calculating the sum or difference of their coefficients
(4y3−2y)dxdy=−2x
Divide both sides
4y3−2y(4y3−2y)dxdy=4y3−2y−2x
Divide the numbers
dxdy=4y3−2y−2x
Solution
More Steps

Evaluate
4y3−2y−2x
Rewrite the expression
2(2y3−y)−2x
Cancel out the common factor 2
2y3−y−x
Use b−a=−ba=−ba to rewrite the fraction
−2y3−yx
dxdy=−2y3−yx
Show Solution

Find the second derivative
dx2d2y=−8y9−12y7+6y5−y34y6−4y4+y2+6x2y2−x2
Calculate
y4=y2−x2
Take the derivative of both sides
dxd(y4)=dxd(y2−x2)
Calculate the derivative
More Steps

Evaluate
dxd(y4)
Use differentiation rules
dyd(y4)×dxdy
Use dxdxn=nxn−1 to find derivative
4y3dxdy
4y3dxdy=dxd(y2−x2)
Calculate the derivative
More Steps

Evaluate
dxd(y2−x2)
Use differentiation rules
dxd(y2)+dxd(−x2)
Evaluate the derivative
More Steps

Evaluate
dxd(y2)
Use differentiation rules
dyd(y2)×dxdy
Use dxdxn=nxn−1 to find derivative
2ydxdy
2ydxdy+dxd(−x2)
Evaluate the derivative
More Steps

Evaluate
dxd(−x2)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
−dxd(x2)
Use dxdxn=nxn−1 to find derivative
−2x
2ydxdy−2x
4y3dxdy=2ydxdy−2x
Move the variable to the left side
4y3dxdy−2ydxdy=−2x
Collect like terms by calculating the sum or difference of their coefficients
(4y3−2y)dxdy=−2x
Divide both sides
4y3−2y(4y3−2y)dxdy=4y3−2y−2x
Divide the numbers
dxdy=4y3−2y−2x
Divide the numbers
More Steps

Evaluate
4y3−2y−2x
Rewrite the expression
2(2y3−y)−2x
Cancel out the common factor 2
2y3−y−x
Use b−a=−ba=−ba to rewrite the fraction
−2y3−yx
dxdy=−2y3−yx
Take the derivative of both sides
dxd(dxdy)=dxd(−2y3−yx)
Calculate the derivative
dx2d2y=dxd(−2y3−yx)
Use differentiation rules
dx2d2y=−(2y3−y)2dxd(x)×(2y3−y)−x×dxd(2y3−y)
Use dxdxn=nxn−1 to find derivative
dx2d2y=−(2y3−y)21×(2y3−y)−x×dxd(2y3−y)
Calculate the derivative
More Steps

Evaluate
dxd(2y3−y)
Use differentiation rules
dxd(2y3)+dxd(−y)
Evaluate the derivative
6y2dxdy+dxd(−y)
Evaluate the derivative
6y2dxdy−dxdy
dx2d2y=−(2y3−y)21×(2y3−y)−x(6y2dxdy−dxdy)
Any expression multiplied by 1 remains the same
dx2d2y=−(2y3−y)22y3−y−x(6y2dxdy−dxdy)
Calculate
More Steps

Evaluate
x(6y2dxdy−dxdy)
Use the the distributive property to expand the expression
x×6y2dxdy+x(−dxdy)
Use the commutative property to reorder the terms
6xy2dxdy+x(−dxdy)
Use the commutative property to reorder the terms
6xy2dxdy−xdxdy
dx2d2y=−(2y3−y)22y3−y−(6xy2dxdy−xdxdy)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
dx2d2y=−(2y3−y)22y3−y−6xy2dxdy+xdxdy
Use equation dxdy=−2y3−yx to substitute
dx2d2y=−(2y3−y)22y3−y−6xy2(−2y3−yx)+x(−2y3−yx)
Solution
More Steps

Calculate
−(2y3−y)22y3−y−6xy2(−2y3−yx)+x(−2y3−yx)
Multiply
More Steps

Multiply the terms
−6xy2(−2y3−yx)
Any expression multiplied by 1 remains the same
6xy2×2y3−yx
Rewrite the expression
6xy2×y(2y2−1)x
Cancel out the common factor y
6xy×2y2−1x
Multiply the terms
2y2−16xyx
Multiply the terms
2y2−16x2y
−(2y3−y)22y3−y+2y2−16x2y+x(−2y3−yx)
Multiply the terms
More Steps

Evaluate
x(−2y3−yx)
Multiplying or dividing an odd number of negative terms equals a negative
−x×2y3−yx
Multiply the terms
−2y3−yx×x
Multiply the terms
−2y3−yx2
−(2y3−y)22y3−y+2y2−16x2y−2y3−yx2
Calculate the sum or difference
More Steps

Evaluate
2y3−y+2y2−16x2y−2y3−yx2
Factor the expression
2y3−y+2y2−16x2y−y(2y2−1)x2
Reduce fractions to a common denominator
(2y2−1)y2y3(2y2−1)y−(2y2−1)yy(2y2−1)y+(2y2−1)y6x2y×y−y(2y2−1)x2
Rewrite the expression
y(2y2−1)2y3(2y2−1)y−y(2y2−1)y(2y2−1)y+y(2y2−1)6x2y×y−y(2y2−1)x2
Write all numerators above the common denominator
y(2y2−1)2y3(2y2−1)y−y(2y2−1)y+6x2y×y−x2
Multiply the terms
y(2y2−1)4y6−2y4−y(2y2−1)y+6x2y×y−x2
Multiply the terms
y(2y2−1)4y6−2y4−(2y4−y2)+6x2y×y−x2
Multiply the terms
y(2y2−1)4y6−2y4−(2y4−y2)+6x2y2−x2
Calculate the sum or difference
y(2y2−1)4y6−4y4+y2+6x2y2−x2
−(2y3−y)2y(2y2−1)4y6−4y4+y2+6x2y2−x2
Divide the terms
More Steps

Evaluate
(2y3−y)2y(2y2−1)4y6−4y4+y2+6x2y2−x2
Multiply by the reciprocal
y(2y2−1)4y6−4y4+y2+6x2y2−x2×(2y3−y)21
Multiply the terms
y(2y2−1)(2y3−y)24y6−4y4+y2+6x2y2−x2
−y(2y2−1)(2y3−y)24y6−4y4+y2+6x2y2−x2
Expand the expression
More Steps

Evaluate
y(2y2−1)(2y3−y)2
Expand the expression
y(2y2−1)(4y6−4y4+y2)
Multiply the terms
(2y3−y)(4y6−4y4+y2)
Apply the distributive property
2y3×4y6−2y3×4y4+2y3×y2−y×4y6−(−y×4y4)−y×y2
Multiply the terms
8y9−2y3×4y4+2y3×y2−y×4y6−(−y×4y4)−y×y2
Multiply the terms
8y9−8y7+2y3×y2−y×4y6−(−y×4y4)−y×y2
Multiply the terms
8y9−8y7+2y5−y×4y6−(−y×4y4)−y×y2
Multiply the terms
8y9−8y7+2y5−4y7−(−y×4y4)−y×y2
Multiply the terms
8y9−8y7+2y5−4y7−(−4y5)−y×y2
Multiply the terms
8y9−8y7+2y5−4y7−(−4y5)−y3
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
8y9−8y7+2y5−4y7+4y5−y3
Subtract the terms
8y9−12y7+2y5+4y5−y3
Add the terms
8y9−12y7+6y5−y3
−8y9−12y7+6y5−y34y6−4y4+y2+6x2y2−x2
dx2d2y=−8y9−12y7+6y5−y34y6−4y4+y2+6x2y2−x2
Show Solution
