Question
Solve the equation
Solve for x
Solve for y
x=2y5
Evaluate
y5=2(x×1)
Remove the parentheses
y5=2x×1
Multiply the terms
y5=2x
Swap the sides of the equation
2x=y5
Divide both sides
22x=2y5
Solution
x=2y5
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Symmetry with respect to the origin
Evaluate
y5=2(x×1)
Remove the parentheses
y5=2x×1
Multiply the terms
y5=2x
To test if the graph of y5=2x is symmetry with respect to the origin,substitute -x for x and -y for y
(−y)5=2(−x)
Evaluate
−y5=2(−x)
Evaluate
−y5=−2x
Solution
Symmetry with respect to the origin
Show Solution

Rewrite the equation
r=0r=42cos(θ)csc(θ)×∣csc(θ)∣r=−42cos(θ)csc(θ)×∣csc(θ)∣
Evaluate
y5=2(x×1)
Evaluate
More Steps

Evaluate
2(x×1)
Remove the parentheses
2x×1
Multiply the terms
2x
y5=2x
Move the expression to the left side
y5−2x=0
To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ)
(sin(θ)×r)5−2cos(θ)×r=0
Factor the expression
sin5(θ)×r5−2cos(θ)×r=0
Factor the expression
r(sin5(θ)×r4−2cos(θ))=0
When the product of factors equals 0,at least one factor is 0
r=0sin5(θ)×r4−2cos(θ)=0
Solution
More Steps

Factor the expression
sin5(θ)×r4−2cos(θ)=0
Subtract the terms
sin5(θ)×r4−2cos(θ)−(−2cos(θ))=0−(−2cos(θ))
Evaluate
sin5(θ)×r4=2cos(θ)
Divide the terms
r4=sin5(θ)2cos(θ)
Simplify the expression
r4=2cos(θ)csc5(θ)
Evaluate the power
r=±42cos(θ)csc5(θ)
Simplify the expression
More Steps

Evaluate
42cos(θ)csc5(θ)
Rewrite the exponent as a sum
42cos(θ)csc4+1(θ)
Use am+n=am×an to expand the expression
42cos(θ)csc4(θ)csc(θ)
Rewrite the expression
4csc4(θ)×2cos(θ)csc(θ)
Calculate
∣csc(θ)∣×42cos(θ)csc(θ)
Calculate
42cos(θ)csc(θ)×∣csc(θ)∣
r=±(42cos(θ)csc(θ)×∣csc(θ)∣)
Separate into possible cases
r=42cos(θ)csc(θ)×∣csc(θ)∣r=−42cos(θ)csc(θ)×∣csc(θ)∣
r=0r=42cos(θ)csc(θ)×∣csc(θ)∣r=−42cos(θ)csc(θ)×∣csc(θ)∣
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=5y42
Calculate
y5=2(x1)
Simplify the expression
y5=2x
Take the derivative of both sides
dxd(y5)=dxd(2x)
Calculate the derivative
More Steps

Evaluate
dxd(y5)
Use differentiation rules
dyd(y5)×dxdy
Use dxdxn=nxn−1 to find derivative
5y4dxdy
5y4dxdy=dxd(2x)
Calculate the derivative
More Steps

Evaluate
dxd(2x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
2×dxd(x)
Use dxdxn=nxn−1 to find derivative
2×1
Any expression multiplied by 1 remains the same
2
5y4dxdy=2
Divide both sides
5y45y4dxdy=5y42
Solution
dxdy=5y42
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=−25y916
Calculate
y5=2(x1)
Simplify the expression
y5=2x
Take the derivative of both sides
dxd(y5)=dxd(2x)
Calculate the derivative
More Steps

Evaluate
dxd(y5)
Use differentiation rules
dyd(y5)×dxdy
Use dxdxn=nxn−1 to find derivative
5y4dxdy
5y4dxdy=dxd(2x)
Calculate the derivative
More Steps

Evaluate
dxd(2x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
2×dxd(x)
Use dxdxn=nxn−1 to find derivative
2×1
Any expression multiplied by 1 remains the same
2
5y4dxdy=2
Divide both sides
5y45y4dxdy=5y42
Divide the numbers
dxdy=5y42
Take the derivative of both sides
dxd(dxdy)=dxd(5y42)
Calculate the derivative
dx2d2y=dxd(5y42)
Use differentiation rules
dx2d2y=52×dxd(y41)
Rewrite the expression in exponential form
dx2d2y=52×dxd(y−4)
Calculate the derivative
More Steps

Evaluate
dxd(y−4)
Use differentiation rules
dyd(y−4)×dxdy
Use dxdxn=nxn−1 to find derivative
−4y−5dxdy
dx2d2y=52(−4y−5dxdy)
Rewrite the expression
dx2d2y=52(−y54dxdy)
Calculate
dx2d2y=−5y58dxdy
Use equation dxdy=5y42 to substitute
dx2d2y=−5y58×5y42
Solution
More Steps

Calculate
−5y58×5y42
Multiply the terms
More Steps

Multiply the terms
8×5y42
Multiply the terms
5y48×2
Multiply the terms
5y416
−5y55y416
Divide the terms
More Steps

Evaluate
5y55y416
Multiply by the reciprocal
5y416×5y51
Multiply the terms
5y4×5y516
Multiply the terms
25y916
−25y916
dx2d2y=−25y916
Show Solution
