Question
Solve the differential equation
y2=sin(t)+C,C∈R
Evaluate
y′×2y=cos(t)
Rewrite the expression
2y×y′=cos(t)
Rewrite the expression
2ydtdy=cos(t)
Transform the expression
2ydy=cos(t)dt
Integrate the left-hand side of the equation with respect to y and the right-hand side of the equation with respect to t
∫2ydy=∫cos(t)dt
Calculate
More Steps

Evaluate
∫2ydy
Use the property of integral ∫kf(x)dx=k∫f(x)dx
2×∫ydy
Use the property of integral ∫xndx=n+1xn+1
2×1+1y1+1
Simplify
More Steps

Evaluate
1+1y1+1
Add the numbers
1+1y2
Add the numbers
2y2
2×2y2
Cancel out the common factor 2
1×y2
Multiply the terms
y2
Add the constant of integral C1
y2+C1,C1∈R
y2+C1=∫cos(t)dt,C1∈R
Calculate
More Steps

Evaluate
∫cos(t)dt
Use the property of integral ∫cos(x)dx=sin(x)
sin(t)
Add the constant of integral C2
sin(t)+C2,C2∈R
y2+C1=sin(t)+C2,C1∈R,C2∈R
Solution
y2=sin(t)+C,C∈R
Show Solution
