Question
Solve the differential equation
y=614x3−9x2+C,C∈R
Evaluate
y′=7x2−3x
Rewrite the expression
dxdy=7x2−3x
Transform the expression
dy=(7x2−3x)dx
Integrate the left-hand side of the equation with respect to y and the right-hand side of the equation with respect to x
∫1dy=∫(7x2−3x)dx
Calculate
More Steps

Evaluate
∫1dy
Use the property of integral ∫kdx=kx
y
Add the constant of integral C1
y+C1,C1∈R
y+C1=∫(7x2−3x)dx,C1∈R
Calculate
More Steps

Evaluate
∫(7x2−3x)dx
Use the property of integral ∫f(x)±g(x)dx=∫f(x)dx±∫g(x)dx
∫7x2dx+∫−3xdx
Evaluate the integral
More Steps

Evaluate
∫7x2dx
Use the property of integral ∫kf(x)dx=k∫f(x)dx
7×∫x2dx
Use the property of integral ∫xndx=n+1xn+1
7×2+1x2+1
Simplify
7×3x3
Multiply the terms
37x3
37x3+∫−3xdx
Evaluate the integral
More Steps

Evaluate
∫−3xdx
Use the property of integral ∫kf(x)dx=k∫f(x)dx
−3×∫xdx
Use the property of integral ∫xndx=n+1xn+1
−3×1+1x1+1
Simplify
−3×2x2
Multiply the terms
−23x2
37x3−23x2
Reduce fractions to a common denominator
3×27x3×2−2×33x2×3
Multiply the numbers
67x3×2−2×33x2×3
Multiply the numbers
67x3×2−63x2×3
Write all numerators above the common denominator
67x3×2−3x2×3
Multiply the terms
614x3−3x2×3
Multiply the terms
614x3−9x2
Add the constant of integral C2
614x3−9x2+C2,C2∈R
y+C1=614x3−9x2+C2,C1∈R,C2∈R
Solution
y=614x3−9x2+C,C∈R
Show Solution
