Question
Simplify the expression
12y3x4−288y3x3+2304y3x2−6144y3x
Evaluate
y(x−8)(x−8)(y×12)(x2y−8xy)
Remove the parentheses
y(x−8)(x−8)y×12(x2y−8xy)
Multiply the terms
y2(x−8)(x−8)×12(x2y−8xy)
Use the commutative property to reorder the terms
12y2(x−8)(x−8)(x2y−8xy)
Multiply the first two terms
12y2(x−8)2(x2y−8xy)
Expand the expression
More Steps

Evaluate
(x−8)2
Use (a−b)2=a2−2ab+b2 to expand the expression
x2−2x×8+82
Calculate
x2−16x+64
12y2(x2−16x+64)(x2y−8xy)
Multiply the terms
More Steps

Evaluate
12y2(x2−16x+64)
Apply the distributive property
12y2x2−12y2×16x+12y2×64
Multiply the numbers
12y2x2−192y2x+12y2×64
Multiply the numbers
12y2x2−192y2x+768y2
(12y2x2−192y2x+768y2)(x2y−8xy)
Apply the distributive property
12y2x2×x2y−12y2x2×8xy−192y2x×x2y−(−192y2x×8xy)+768y2x2y−768y2×8xy
Multiply the terms
More Steps

Evaluate
12y2x2×x2y
Multiply the terms
More Steps

Evaluate
x2×x2
Use the product rule an×am=an+m to simplify the expression
x2+2
Add the numbers
x4
12y2x4y
Multiply the terms
More Steps

Evaluate
y2×y
Use the product rule an×am=an+m to simplify the expression
y2+1
Add the numbers
y3
12y3x4
12y3x4−12y2x2×8xy−192y2x×x2y−(−192y2x×8xy)+768y2x2y−768y2×8xy
Multiply the terms
More Steps

Evaluate
12y2x2×8xy
Multiply the numbers
96y2x2×xy
Multiply the terms
More Steps

Evaluate
x2×x
Use the product rule an×am=an+m to simplify the expression
x2+1
Add the numbers
x3
96y2x3y
Multiply the terms
More Steps

Evaluate
y2×y
Use the product rule an×am=an+m to simplify the expression
y2+1
Add the numbers
y3
96y3x3
12y3x4−96y3x3−192y2x×x2y−(−192y2x×8xy)+768y2x2y−768y2×8xy
Multiply the terms
More Steps

Evaluate
−192y2x×x2y
Multiply the terms
More Steps

Evaluate
x×x2
Use the product rule an×am=an+m to simplify the expression
x1+2
Add the numbers
x3
−192y2x3y
Multiply the terms
More Steps

Evaluate
y2×y
Use the product rule an×am=an+m to simplify the expression
y2+1
Add the numbers
y3
−192y3x3
12y3x4−96y3x3−192y3x3−(−192y2x×8xy)+768y2x2y−768y2×8xy
Multiply the terms
More Steps

Evaluate
−192y2x×8xy
Multiply the numbers
−1536y2x×xy
Multiply the terms
−1536y2x2y
Multiply the terms
More Steps

Evaluate
y2×y
Use the product rule an×am=an+m to simplify the expression
y2+1
Add the numbers
y3
−1536y3x2
12y3x4−96y3x3−192y3x3−(−1536y3x2)+768y2x2y−768y2×8xy
Multiply the terms
More Steps

Evaluate
y2×y
Use the product rule an×am=an+m to simplify the expression
y2+1
Add the numbers
y3
12y3x4−96y3x3−192y3x3−(−1536y3x2)+768y3x2−768y2×8xy
Multiply the terms
More Steps

Evaluate
768y2×8xy
Multiply the numbers
6144y2xy
Multiply the terms
More Steps

Evaluate
y2×y
Use the product rule an×am=an+m to simplify the expression
y2+1
Add the numbers
y3
6144y3x
12y3x4−96y3x3−192y3x3−(−1536y3x2)+768y3x2−6144y3x
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
12y3x4−96y3x3−192y3x3+1536y3x2+768y3x2−6144y3x
Subtract the terms
More Steps

Evaluate
−96y3x3−192y3x3
Collect like terms by calculating the sum or difference of their coefficients
(−96−192)y3x3
Subtract the numbers
−288y3x3
12y3x4−288y3x3+1536y3x2+768y3x2−6144y3x
Solution
More Steps

Evaluate
1536y3x2+768y3x2
Collect like terms by calculating the sum or difference of their coefficients
(1536+768)y3x2
Add the numbers
2304y3x2
12y3x4−288y3x3+2304y3x2−6144y3x
Show Solution

Factor the expression
12y3x(x−8)3
Evaluate
y(x−8)(x−8)(y×12)(x2y−8xy)
Remove the parentheses
y(x−8)(x−8)y×12(x2y−8xy)
Use the commutative property to reorder the terms
y(x−8)(x−8)×12y(x2y−8xy)
Multiply the terms
y2(x−8)(x−8)×12(x2y−8xy)
Use the commutative property to reorder the terms
12y2(x−8)(x−8)(x2y−8xy)
Multiply the first two terms
12y2(x−8)2(x2y−8xy)
Factor the expression
More Steps

Evaluate
x2y−8xy
Rewrite the expression
xyx−xy×8
Factor out xy from the expression
xy(x−8)
12y2(x−8)2xy(x−8)
Solution
12y3x(x−8)3
Show Solution
