Question
Solve the equation
z1=−3i,z2=2i
Evaluate
z2+iz+6=0
Substitute a=1,b=i and c=6 into the quadratic formula z=2a−b±b2−4ac
z=2−i±i2−4×6
Simplify the expression
More Steps

Evaluate
i2−4×6
Evaluate the power
−1−4×6
Multiply the numbers
−1−24
Subtract the numbers
−25
z=2−i±−25
Simplify the radical expression
More Steps

Evaluate
−25
Evaluate the power
25×−1
Evaluate the power
25×i
Evaluate the square root
More Steps

Evaluate
25
Write the number in exponential form with the base of 5
52
Reduce the index of the radical and exponent with 2
5
5i
z=2−i±5i
Separate the equation into 2 possible cases
z=2−i+5iz=2−i−5i
Simplify the expression
More Steps

Evaluate
z=2−i+5i
Simplify
More Steps

Evaluate
2−i+5i
Add the numbers
24i
Rewrite the expression
22×2i
Reduce the fraction
2i
z=2i
z=2iz=2−i−5i
Simplify the expression
More Steps

Evaluate
z=2−i−5i
Simplify
More Steps

Evaluate
2−i−5i
Subtract the numbers
2−6i
Rewrite the expression
22(−3i)
Reduce the fraction
−3i
z=−3i
z=2iz=−3i
Solution
z1=−3i,z2=2i
Show Solution
