Question
Simplify the expression
264z3
Evaluate
z2×22iz(−12i)
Rewrite the expression
−z2×22iz×12i
Multiply the terms with the same base by adding their exponents
−z2+1×22i×12i
Add the numbers
−z3×22i×12i
Multiply the terms
More Steps

Evaluate
z3×22i×12i
Use the commutative property to reorder the terms
22iz3×12i
Multiply the numbers
More Steps

Evaluate
22i×12i
Multiply
22×12i2
Multiply
264i2
Use i2=−1 to transform the expression
264(−1)
Calculate
−264
−264z3
−(−264z3)
Solution
264z3
Show Solution

Find the roots
z=0
Evaluate
z2(22i)z(−12i)
To find the roots of the expression,set the expression equal to 0
z2(22i)z(−12i)=0
Multiply the numbers
z2×22iz(−12i)=0
Multiply the terms
More Steps

Multiply the terms
z2×22iz(−12i)
Rewrite the expression
−z2×22iz×12i
Multiply the terms with the same base by adding their exponents
−z2+1×22i×12i
Add the numbers
−z3×22i×12i
Multiply the terms
More Steps

Evaluate
z3×22i×12i
Use the commutative property to reorder the terms
22iz3×12i
Multiply the numbers
−264z3
−(−264z3)
Multiply the first two terms
264z3
264z3=0
Rewrite the expression
z3=0
Solution
z=0
Show Solution
