Question
Solve the equation
z1=210+210iz2=−210−210i
Alternative Form
z1≈1.581139+1.581139iz2≈−1.581139−1.581139i
Evaluate
z2=5i
Simplify
z=5i
Rewrite the complex number in polar form
More Steps

Evaluate
5i
Determine the modulus and the argument of the complex number
r=02+52θ=arctan(05)
Calculate
More Steps

Evaluate
02+52
Calculate
0+52
Add the numbers
25
Write the number in exponential form with the base of 5
52
Reduce the index of the radical and exponent with 2
5
r=5θ=arctan(05)
Substitute the given values into the formula r(cosθ+isinθ)
5(cos(2π)+isin(2π))
z=5(cos(2π)+isin(2π))
Calculate the nth roots of a complex r(cos(θ)+i×sin(θ),using nz=nr(cosnθ+2kπ+isinnθ+2kπ)
z=5×(cos(22π+2kπ)+isin(22π+2kπ))
Since n=2,substitute k=0,1 into the expression
z1=5×(cos(22π+2×0×π)+isin(22π+2×0×π))z2=5×(cos(22π+2×1×π)+isin(22π+2×1×π))
Calculate
More Steps

Evaluate
22π+2×0×π
Any expression multiplied by 0 equals 0
22π+0
Removing 0 doesn't change the value,so remove it from the expression
22π
Rewrite the expression
2π×21
To multiply the fractions,multiply the numerators and denominators separately
2×2π
Multiply the numbers
4π
z1=5×(cos(4π)+isin(4π))z2=5×(cos(22π+2×1×π)+isin(22π+2×1×π))
Calculate
More Steps

Evaluate
22π+2×1×π
Multiply the terms
22π+2π
Calculate
More Steps

Evaluate
2π+2π
Reduce fractions to a common denominator
2π+22π×2
Write all numerators above the common denominator
2π+2π×2
Multiply the terms
2π+4π
Add the numbers
25π
225π
Rewrite the expression
25π×21
To multiply the fractions,multiply the numerators and denominators separately
2×25π
Multiply the numbers
45π
z1=5×(cos(4π)+isin(4π))z2=5×(cos(45π)+isin(45π))
Solution
z1=210+210iz2=−210−210i
Alternative Form
z1≈1.581139+1.581139iz2≈−1.581139−1.581139i
Show Solution
