Question
Solve the system of equations
Solve using the substitution method
Solve using the elimination method
Solve using the Gauss-Jordan method
Load more
(x,y)=(2,2)
Evaluate
{3x+1​=4y+2​4x−3​−3y−3​=121​​
Solve the equation for x
More Steps
Evaluate
3x+1​=4y+2​
Multiply both sides of the equation by 3
3x+1​×3=4y+2​×3
Multiply the terms
x+1=4(y+2)×3​
Evaluate
x+1=43y+6​
Move the constant to the right side
x=43y+6​−1
Subtract the terms
More Steps
Evaluate
43y+6​−1
Reduce fractions to a common denominator
43y+6​−44​
Write all numerators above the common denominator
43y+6−4​
Subtract the numbers
43y+2​
x=43y+2​
{x=43y+2​4x−3​−3y−3​=121​​
Substitute the given value of x into the equation 4x−3​−3y−3​=121​
443y+2​−3​−3y−3​=121​
Simplify
More Steps
Evaluate
443y+2​−3​−3y−3​
Subtract the terms
More Steps
Evaluate
43y+2​−3
Reduce fractions to a common denominator
43y+2​−43×4​
Calculate
43y+2​−412​
Write all numerators above the common denominator
43y+2−12​
Subtract the numbers
43y−10​
443y−10​​−3y−3​
Divide the terms
More Steps
Evaluate
443y−10​​
Multiply by the reciprocal
43y−10​×41​
Multiply the terms
4×43y−10​
Multiply the terms
163y−10​
163y−10​−3y−3​
163y−10​−3y−3​=121​
Multiply both sides of the equation by LCD
(163y−10​−3y−3​)×48=121​×48
Simplify the equation
More Steps
Evaluate
(163y−10​−3y−3​)×48
Apply the distributive property
163y−10​×48−3y−3​×48
Simplify
(3y−10)×3+(−y+3)×16
Multiply the terms
More Steps
Evaluate
(3y−10)×3
Apply the distributive property
3y×3−10×3
Calculate
9y−10×3
Calculate
9y−30
9y−30+(−y+3)×16
Multiply the terms
More Steps
Evaluate
(−y+3)×16
Apply the distributive property
−y×16+3×16
Calculate
−16y+3×16
Calculate
−16y+48
9y−30−16y+48
Subtract the terms
More Steps
Evaluate
9y−16y
Collect like terms by calculating the sum or difference of their coefficients
(9−16)y
Subtract the numbers
−7y
−7y−30+48
Add the numbers
−7y+18
−7y+18=121​×48
Simplify the equation
More Steps
Evaluate
121​×48
Simplify
1×4
Any expression multiplied by 1 remains the same
4
−7y+18=4
Move the constant to the right side
−7y=4−18
Subtract the numbers
−7y=−14
Change the signs on both sides of the equation
7y=14
Divide both sides
77y​=714​
Divide the numbers
y=714​
Divide the numbers
y=2
Substitute the given value of y into the equation x=43y+2​
x=43×2+2​
Simplify the expression
x=2
Calculate
{x=2y=2​
Check the solution
More Steps
Check the solution
{32+1​=42+2​42−3​−32−3​=121​​
Simplify
{1=1121​=121​​
Evaluate
true
{x=2y=2​
Solution
(x,y)=(2,2)
Show Solution
Graph