Question :
int x/(1-2x)
Evaluate the integral
−21x−41ln(∣2x−1∣)+C,C∈R
Evaluate
∫(1−2x)xdx
Remove the parentheses
∫1−2xxdx
Rearrange the terms
∫−2x−1xdx
Rewrite the fraction
∫−(21+4x−21)dx
Calculate
∫(−21−4x−21)dx
Use the property of integral ∫f(x)±g(x)dx=∫f(x)dx±∫g(x)dx
∫−21dx+∫−4x−21dx
Use the property of integral ∫kdx=kx
−21x+∫−4x−21dx
Evaluate the integral
More Steps

Evaluate
∫−4x−21dx
Rewrite the expression
∫−21×2x−11dx
Use the property of integral ∫kf(x)dx=k∫f(x)dx
−21×∫2x−11dx
Use the property of integral ∫ax+b1dx=a1ln∣ax+b∣
−21×21ln(∣2x−1∣)
Multiply the terms
More Steps

Evaluate
21×21
To multiply the fractions,multiply the numerators and denominators separately
2×21
Multiply the numbers
41
−41ln(∣2x−1∣)
−21x−41ln(∣2x−1∣)
Solution
−21x−41ln(∣2x−1∣)+C,C∈R
Show Solution
