Question :
fracddx ( -csc^2(x) )
Evaluate the derivative
2csc3(x)cos(x)
Evaluate
dxd(−csc2(x))
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
−dxd(csc2(x))
Use the chain rule dxd(f(g))=dgd(f(g))×dxd(g) where the g=csc(x), to find the derivative
−dgd(g2)×dxd(csc(x))
Use dxdxn=nxn−1 to find derivative
−2g×dxd(csc(x))
Use dxd(cscx)=−cscxcotx to find derivative
−2g(−csc(x)cot(x))
Substitute back
−2csc(x)(−csc(x)cot(x))
Rewrite the expression
2csc(x)csc(x)cot(x)
Calculate
More Steps

Multiply the terms
csc(x)csc(x)
Calculate
csc1+1(x)
Calculate
csc2(x)
2csc2(x)cot(x)
Calculate
More Steps

Evaluate
csc2(x)
Transform the expression
(sin(x)1)2
Simplify
sin2(x)1
2×sin2(x)1×cot(x)
Calculate
2×sin2(x)1×sin(x)cos(x)
Calculate
sin3(x)2cos(x)
Rewrite the expression
2sin−3(x)cos(x)
Rewrite the expression
2cos(x)sin−3(x)
Simplify
2cos(x)csc3(x)
Solution
2csc3(x)cos(x)
Show Solution
