Question :
fracddx ( sec^2(2x) )
Evaluate the derivative
4sec3(2x)sin(2x)
Evaluate
dxd(sec2(2x))
Use the chain rule dxd(f(g))=dgd(f(g))×dxd(g) where the g=sec(2x), to find the derivative
dgd(g2)×dxd(sec(2x))
Use dxdxn=nxn−1 to find derivative
2g×dxd(sec(2x))
Calculate
More Steps

Calculate
dxd(sec(2x))
Use the chain rule dxd(f(g))=dgd(f(g))×dxd(g) where the g=2x, to find the derivative
dgd(sec(g))×dxd(2x)
Use dxd(secx)=secxtanx to find derivative
sec(g)tan(g)×dxd(2x)
Calculate
More Steps

Calculate
dxd(2x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
2×dxd(x)
Use dxdxn=nxn−1 to find derivative
2×1
Any expression multiplied by 1 remains the same
2
sec(g)tan(g)×2
Substitute back
sec(2x)tan(2x)×2
Calculate
More Steps

Calculate
sec(2x)tan(2x)
Calculate
cos(2x)1×tan(2x)
Calculate
cos(2x)1×cos(2x)sin(2x)
Calculate
cos2(2x)sin(2x)
Rewrite the expression
cos−2(2x)sin(2x)
Simplify
(1+tan2(2x))sin(2x)
Rewrite the expression
sin(2x)+sin(2x)tan2(2x)
Calculate
sin(2x)+sin(2x)(sec2(2x)−1)
Calculate
sec2(2x)sin(2x)
Rewrite the expression
sin(2x)sec2(2x)
sin(2x)sec2(2x)×2
Use the commutative property to reorder the terms
2sin(2x)sec2(2x)
2g×2sin(2x)sec2(2x)
Substitute back
2sec(2x)×2sin(2x)sec2(2x)
Multiply the terms
4sec(2x)sin(2x)sec2(2x)
Solution
More Steps

Multiply the terms
sec(2x)sec2(2x)
Calculate
sec1+2(2x)
Calculate
sec3(2x)
4sec3(2x)sin(2x)
Show Solution
