Question :
(2,2) , (-2,-2)
Find the distance
d=42
Alternative Form
d≈5.656854
Evaluate
(2,2),(−2,−2)
Let (x1,y1)=(2,2) and (x2,y2)=(−2,−2)
(x1,y1)=(2,2)(x2,y2)=(−2,−2)
Use the distance formula d=(x2−x1)2+(y2−y1)2
d=(x2−x1)2+(y2−y1)2
Substitute x1=2,y1=2 and x2=−2,y2=−2 into the equation
d=(−2−2)2+(−2−2)2
Subtract the numbers
d=(−4)2+(−2−2)2
Subtract the numbers
d=(−4)2+(−4)2
Add the numbers
More Steps

Evaluate
(−4)2+(−4)2
Simplify
42+42
Evaluate the power
16+42
Evaluate the power
16+16
Add the numbers
32
d=32
Solution
More Steps

Evaluate
32
Write the expression as a product where the root of one of the factors can be evaluated
16×2
Write the number in exponential form with the base of 4
42×2
The root of a product is equal to the product of the roots of each factor
42×2
Reduce the index of the radical and exponent with 2
42
d=42
Alternative Form
d≈5.656854
Show Solution

Midpoint
Find the midpoint between (2,2) and (−2,−2)
Find the other endpoint if (2,2) is the midpoint
Find the other endpoint if (−2,−2) is the midpoint
Midpoint=(0,0)
Evaluate
(2,2),(−2,−2)
Let (x1,y1)=(2,2) and (x2,y2)=(−2,−2)
(x1,y1)=(2,2)(x2,y2)=(−2,−2)
Use the midpoint formula Midpoint=(2x1+x2,2y1+y2)
Midpoint=(2x1+x2,2y1+y2)
Substitute x1=2,y1=2 and x2=−2,y2=−2 into the equation
Midpoint=(22−2,22−2)
Calculate
More Steps

Evaluate
22−2
Subtract the numbers
20
Divide the terms
0
Midpoint=(0,22−2)
Solution
More Steps

Evaluate
22−2
Subtract the numbers
20
Divide the terms
0
Midpoint=(0,0)
Show Solution

Find the slope of the line
m=1
Evaluate
(2,2),(−2,−2)
The slope of the points (x1,y1) and (x2,y2) is m=x2−x1y2−y1
m=−2−2−2−2
Subtract the numbers
m=−2−2−4
Subtract the numbers
m=−4−4
Solution
More Steps

Evaluate
−4−4
Reduce the numbers
11
Calculate
1
m=1
Show Solution

Find the equation of the line
Find the equation of the line through (2,2) and (−2,−2)
Find the equation of the line through (2,2) and (−2,−2) using the determinant
y=x
Evaluate
(2,2),(−2,−2)
The slope of the points (x1,y1) and (x2,y2) is m=x2−x1y2−y1
m=−2−2−2−2
Subtract the numbers
m=−2−2−4
Subtract the numbers
m=−4−4
Divide the terms
More Steps

Evaluate
−4−4
Reduce the numbers
11
Calculate
1
m=1
To apply the point-slope formula y−y1=m(x−x1),use the slope m=1 and point (2,2) as (x1,y1)
y−2=1×(x−2)
Any expression multiplied by 1 remains the same
y−2=x−2
Solution
y=x
Show Solution
