Question :
(-3,8) , (7,6)
Find the distance
d=226
Alternative Form
d≈10.198039
Evaluate
(−3,8),(7,6)
Let (x1,y1)=(−3,8) and (x2,y2)=(7,6)
(x1,y1)=(−3,8)(x2,y2)=(7,6)
Use the distance formula d=(x2−x1)2+(y2−y1)2
d=(x2−x1)2+(y2−y1)2
Substitute x1=−3,y1=8 and x2=7,y2=6 into the equation
d=(7−(−3))2+(6−8)2
Subtract the terms
More Steps

Simplify
7−(−3)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
7+3
Add the numbers
10
d=102+(6−8)2
Subtract the numbers
d=102+(−2)2
Add the numbers
More Steps

Evaluate
102+(−2)2
Simplify
102+22
Evaluate the power
100+22
Evaluate the power
100+4
Add the numbers
104
d=104
Solution
More Steps

Evaluate
104
Write the expression as a product where the root of one of the factors can be evaluated
4×26
Write the number in exponential form with the base of 2
22×26
The root of a product is equal to the product of the roots of each factor
22×26
Reduce the index of the radical and exponent with 2
226
d=226
Alternative Form
d≈10.198039
Show Solution

Midpoint
Find the midpoint between (−3,8) and (7,6)
Find the other endpoint if (−3,8) is the midpoint
Find the other endpoint if (7,6) is the midpoint
Midpoint=(2,7)
Evaluate
(−3,8),(7,6)
Let (x1,y1)=(−3,8) and (x2,y2)=(7,6)
(x1,y1)=(−3,8)(x2,y2)=(7,6)
Use the midpoint formula Midpoint=(2x1+x2,2y1+y2)
Midpoint=(2x1+x2,2y1+y2)
Substitute x1=−3,y1=8 and x2=7,y2=6 into the equation
Midpoint=(2−3+7,28+6)
Calculate
More Steps

Evaluate
2−3+7
Add the numbers
24
Reduce the numbers
12
Calculate
2
Midpoint=(2,28+6)
Solution
More Steps

Evaluate
28+6
Add the numbers
214
Reduce the numbers
17
Calculate
7
Midpoint=(2,7)
Show Solution

Find the slope of the line
m=−51
Evaluate
(−3,8),(7,6)
The slope of the points (x1,y1) and (x2,y2) is m=x2−x1y2−y1
m=7−(−3)6−8
Subtract the numbers
m=7−(−3)−2
Subtract the terms
More Steps

Simplify
7−(−3)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
7+3
Add the numbers
10
m=10−2
Solution
More Steps

Evaluate
10−2
Cancel out the common factor 2
5−1
Use b−a=−ba=−ba to rewrite the fraction
−51
m=−51
Show Solution

Find the equation of the line
Find the equation of the line through (−3,8) and (7,6)
Find the equation of the line through (−3,8) and (7,6) using the determinant
y=−51x+537
Evaluate
(−3,8),(7,6)
The slope of the points (x1,y1) and (x2,y2) is m=x2−x1y2−y1
m=7−(−3)6−8
Subtract the numbers
m=7−(−3)−2
Subtract the terms
More Steps

Simplify
7−(−3)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
7+3
Add the numbers
10
m=10−2
Divide the terms
More Steps

Evaluate
10−2
Cancel out the common factor 2
5−1
Use b−a=−ba=−ba to rewrite the fraction
−51
m=−51
To apply the point-slope formula y−y1=m(x−x1),use the slope m=−51 and point (−3,8) as (x1,y1)
y−8=−51(x−(−3))
Calculate
More Steps

Evaluate
−51(x−(−3))
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−51(x+3)
Apply the distributive property
−51x−51×3
Multiply the numbers
−51x−53
y−8=−51x−53
Solution
y=−51x+537
Show Solution
