Question :
frac(3x+5)(x(x+2))
Simplify the expression
x2+2x3x+5
Evaluate
(x(x+2))(3x+5)
Remove the parentheses
x(x+2)3x+5
Solution
More Steps

Evaluate
x(x+2)
Apply the distributive property
x×x+x×2
Multiply the terms
x2+x×2
Use the commutative property to reorder the terms
x2+2x
x2+2x3x+5
Show Solution

Find the excluded values
x=0,x=−2
Evaluate
(x(x+2))(3x+5)
To find the excluded values,set the denominators equal to 0
x(x+2)=0
Separate the equation into 2 possible cases
x=0x+2=0
Solve the equation
More Steps

Evaluate
x+2=0
Move the constant to the right-hand side and change its sign
x=0−2
Removing 0 doesn't change the value,so remove it from the expression
x=−2
x=0x=−2
Solution
x=0,x=−2
Show Solution

Rewrite the fraction
2x5+2(x+2)1
Evaluate
(x(x+2))(3x+5)
Remove the parentheses
x(x+2)3x+5
For each factor in the denominator,write a new fraction
x?+x+2?
Write the terms in the numerator
xA+x+2B
Set the sum of fractions equal to the original fraction
x(x+2)3x+5=xA+x+2B
Multiply both sides
x(x+2)3x+5×x(x+2)=xA×x(x+2)+x+2B×x(x+2)
Simplify the expression
3x+5=(x+2)A+xB
Simplify the expression
More Steps

Evaluate
(x+2)A+xB
Multiply the terms
A(x+2)+xB
Expand the expression
Ax+2A+xB
3x+5=Ax+2A+xB
Group the terms
3x+5=(A+B)x+2A
Equate the coefficients
{3=A+B5=2A
Swap the sides
{A+B=32A=5
Solve the equation for A
More Steps

Evaluate
2A=5
Divide both sides
22A=25
Divide the numbers
A=25
{A+B=3A=25
Substitute the given value of A into the equation A+B=3
25+B=3
Move the constant to the right-hand side and change its sign
B=3−25
Subtract the numbers
More Steps

Evaluate
3−25
Reduce fractions to a common denominator
23×2−25
Write all numerators above the common denominator
23×2−5
Multiply the numbers
26−5
Subtract the numbers
21
B=21
Calculate
{A=25B=21
Solution
2x5+2(x+2)1
Show Solution

Find the roots
x=−35
Alternative Form
x=−1.6˙
Evaluate
(x(x+2))(3x+5)
To find the roots of the expression,set the expression equal to 0
(x(x+2))(3x+5)=0
Find the domain
More Steps

Evaluate
x(x+2)=0
Apply the zero product property
{x=0x+2=0
Solve the inequality
More Steps

Evaluate
x+2=0
Move the constant to the right side
x=0−2
Removing 0 doesn't change the value,so remove it from the expression
x=−2
{x=0x=−2
Find the intersection
x∈(−∞,−2)∪(−2,0)∪(0,+∞)
(x(x+2))(3x+5)=0,x∈(−∞,−2)∪(−2,0)∪(0,+∞)
Calculate
(x(x+2))(3x+5)=0
Remove the parentheses
(x(x+2))3x+5=0
Multiply the terms
x(x+2)3x+5=0
Cross multiply
3x+5=x(x+2)×0
Simplify the equation
3x+5=0
Move the constant to the right side
3x=0−5
Removing 0 doesn't change the value,so remove it from the expression
3x=−5
Divide both sides
33x=3−5
Divide the numbers
x=3−5
Use b−a=−ba=−ba to rewrite the fraction
x=−35
Check if the solution is in the defined range
x=−35,x∈(−∞,−2)∪(−2,0)∪(0,+∞)
Solution
x=−35
Alternative Form
x=−1.6˙
Show Solution
