Question :
frac(x^2+1)(x(x+1)^2)
Simplify the expression
x3+2x2+xx2+1
Evaluate
(x(x+1)2)(x2+1)
Remove the parentheses
x(x+1)2x2+1
Solution
More Steps

Evaluate
x(x+1)2
Expand the expression
More Steps

Evaluate
(x+1)2
Use (a+b)2=a2+2ab+b2 to expand the expression
x2+2x×1+12
Calculate
x2+2x+1
x(x2+2x+1)
Apply the distributive property
x×x2+x×2x+x×1
Multiply the terms
More Steps

Evaluate
x×x2
Use the product rule an×am=an+m to simplify the expression
x1+2
Add the numbers
x3
x3+x×2x+x×1
Multiply the terms
More Steps

Evaluate
x×2x
Use the commutative property to reorder the terms
2x×x
Multiply the terms
2x2
x3+2x2+x×1
Any expression multiplied by 1 remains the same
x3+2x2+x
x3+2x2+xx2+1
Show Solution

Find the excluded values
x=0,x=−1
Evaluate
(x(x+1)2)(x2+1)
To find the excluded values,set the denominators equal to 0
x(x+1)2=0
Separate the equation into 2 possible cases
x=0(x+1)2=0
Solve the equation
More Steps

Evaluate
(x+1)2=0
The only way a power can be 0 is when the base equals 0
x+1=0
Move the constant to the right-hand side and change its sign
x=0−1
Removing 0 doesn't change the value,so remove it from the expression
x=−1
x=0x=−1
Solution
x=0,x=−1
Show Solution

Rewrite the fraction
x1−(x+1)22
Evaluate
(x(x+1)2)(x2+1)
Remove the parentheses
x(x+1)2x2+1
For each factor in the denominator,write a new fraction
x?+(x+1)2?+x+1?
Write the terms in the numerator
xA+(x+1)2B+x+1C
Set the sum of fractions equal to the original fraction
x(x+1)2x2+1=xA+(x+1)2B+x+1C
Multiply both sides
x(x+1)2x2+1×x(x+1)2=xA×x(x+1)2+(x+1)2B×x(x+1)2+x+1C×x(x+1)2
Simplify the expression
x2+1=(x2+2x+1)A+xB+(x2+x)C
Simplify the expression
More Steps

Evaluate
(x2+2x+1)A+xB+(x2+x)C
Multiply the terms
A(x2+2x+1)+xB+(x2+x)C
Multiply the terms
A(x2+2x+1)+xB+C(x2+x)
Expand the expression
Ax2+2Ax+A+xB+C(x2+x)
Expand the expression
Ax2+2Ax+A+xB+Cx2+Cx
x2+1=Ax2+2Ax+A+xB+Cx2+Cx
Group the terms
x2+1=(A+C)x2+(2A+B+C)x+A
Equate the coefficients
⎩⎨⎧1=A+C0=2A+B+C1=A
Swap the sides
⎩⎨⎧A+C=12A+B+C=0A=1
Substitute the given value of A into the equation {A+C=12A+B+C=0
{1+C=12×1+B+C=0
Any expression multiplied by 1 remains the same
{1+C=12+B+C=0
Solve the equation for C
More Steps

Evaluate
1+C=1
Move the constant to the right-hand side and change its sign
C=1−1
Subtract the terms
C=0
{C=02+B+C=0
Substitute the given value of C into the equation 2+B+C=0
2+B+0=0
Removing 0 doesn't change the value,so remove it from the expression
2+B=0
Move the constant to the right-hand side and change its sign
B=0−2
Removing 0 doesn't change the value,so remove it from the expression
B=−2
Calculate
⎩⎨⎧A=1B=−2C=0
Solution
x1−(x+1)22
Show Solution

Find the roots
x∈/R
Evaluate
(x(x+1)2)(x2+1)
To find the roots of the expression,set the expression equal to 0
(x(x+1)2)(x2+1)=0
Find the domain
More Steps

Evaluate
x(x+1)2=0
Apply the zero product property
{x=0(x+1)2=0
Solve the inequality
More Steps

Evaluate
(x+1)2=0
The only way a power can not be 0 is when the base not equals 0
x+1=0
Move the constant to the right side
x=0−1
Removing 0 doesn't change the value,so remove it from the expression
x=−1
{x=0x=−1
Find the intersection
x∈(−∞,−1)∪(−1,0)∪(0,+∞)
(x(x+1)2)(x2+1)=0,x∈(−∞,−1)∪(−1,0)∪(0,+∞)
Calculate
(x(x+1)2)(x2+1)=0
Remove the parentheses
(x(x+1)2)x2+1=0
Multiply the terms
x(x+1)2x2+1=0
Cross multiply
x2+1=x(x+1)2×0
Simplify the equation
x2+1=0
Solution
x∈/R
Show Solution
