Question :
x + y + z = 6, 2x - y + z = 5, x + 2y - z = 3
Solve the system of equations
Solve using the substitution method
Solve using the elimination method
Solve using the Gauss-Jordan method
Load more

(x,y,z)=(715,711,716)
Alternative Form
(x,y,z)=(2.1˙42857˙,1.5˙71428˙,2.2˙85714˙)
Evaluate
⎩⎨⎧x+y+z=62x−y+z=5x+2y−z=3
Solve the equation for x
More Steps

Evaluate
x+y+z=6
Move the expression to the right-hand side and change its sign
x=6−(y+z)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
x=6−y−z
⎩⎨⎧x=6−y−z2x−y+z=5x+2y−z=3
Substitute the given value of x into the equation {2x−y+z=5x+2y−z=3
{2(6−y−z)−y+z=56−y−z+2y−z=3
Simplify
More Steps

Evaluate
2(6−y−z)−y+z=5
Simplify
More Steps

Evaluate
2(6−y−z)−y+z
Expand the expression
12−2y−2z−y+z
Subtract the terms
12−3y−2z+z
Add the terms
12−3y−z
12−3y−z=5
{12−3y−z=56−y−z+2y−z=3
Simplify
More Steps

Evaluate
6−y−z+2y−z=3
Simplify
More Steps

Evaluate
6−y−z+2y−z
Add the terms
6+y−z−z
Subtract the terms
6+y−2z
6+y−2z=3
{12−3y−z=56+y−2z=3
Solve the equation for z
More Steps

Evaluate
12−3y−z=5
Move the expression to the right-hand side and change its sign
−z=5−(12−3y)
Subtract the terms
More Steps

Evaluate
5−(12−3y)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
5−12+3y
Subtract the numbers
−7+3y
−z=−7+3y
Change the signs on both sides of the equation
z=7−3y
{z=7−3y6+y−2z=3
Substitute the given value of z into the equation 6+y−2z=3
6+y−2(7−3y)=3
Simplify
More Steps

Evaluate
6+y−2(7−3y)
Expand the expression
More Steps

Calculate
2(7−3y)
Apply the distributive property
2×7−2×3y
Multiply the numbers
14−2×3y
Multiply the numbers
14−6y
6+y−(14−6y)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
6+y−14+6y
Subtract the numbers
−8+y+6y
Add the terms
More Steps

Evaluate
y+6y
Collect like terms by calculating the sum or difference of their coefficients
(1+6)y
Add the numbers
7y
−8+7y
−8+7y=3
Move the constant to the right-hand side and change its sign
7y=3+8
Add the numbers
7y=11
Divide both sides
77y=711
Divide the numbers
y=711
Substitute the given value of y into the equation z=7−3y
z=7−3×711
Calculate
z=716
Substitute the given values of y,z into the equation x=6−y−z
x=6−711−716
Calculate
x=715
Calculate
⎩⎨⎧x=715y=711z=716
Check the solution
More Steps

Check the solution
⎩⎨⎧715+711+716=62×715−711+716=5715+2×711−716=3
Simplify
⎩⎨⎧6=65=53=3
Evaluate
true
⎩⎨⎧x=715y=711z=716
Solution
(x,y,z)=(715,711,716)
Alternative Form
(x,y,z)=(2.1˙42857˙,1.5˙71428˙,2.2˙85714˙)
Show Solution
