Question :
int _2^4(y^2-3y+5)
Evaluate the integral
332
Alternative Form
1032
Alternative Form
10.6˙
Evaluate
∫24(y2−3y+5)dy
Evaluate the integral
∫(y2−3y+5)dy
Use the property of integral ∫f(x)±g(x)dx=∫f(x)dx±∫g(x)dx
∫y2dy+∫−3ydy+∫5dy
Evaluate the integral
More Steps

Evaluate
∫y2dy
Use the property of integral ∫xndx=n+1xn+1
2+1y2+1
Add the numbers
2+1y3
Add the numbers
3y3
3y3+∫−3ydy+∫5dy
Evaluate the integral
More Steps

Evaluate
∫−3ydy
Use the property of integral ∫kf(x)dx=k∫f(x)dx
−3×∫ydy
Use the property of integral ∫xndx=n+1xn+1
−3×1+1y1+1
Add the numbers
−3×1+1y2
Add the numbers
−3×2y2
Multiply the terms
−23y2
3y3−23y2+∫5dy
Use the property of integral ∫kdx=kx
3y3−23y2+5y
Return the limits
(3y3−23y2+5y)24
Solution
More Steps

Substitute the values into formula
343−23×42+5×4−(323−23×22+5×2)
Multiply the terms
More Steps

Evaluate
3×22
Evaluate the power
3×4
Multiply the numbers
12
343−23×42+5×4−(323−212+5×2)
Multiply the terms
More Steps

Evaluate
3×42
Evaluate the power
3×16
Multiply the numbers
48
343−248+5×4−(323−212+5×2)
Divide the terms
More Steps

Evaluate
212
Reduce the numbers
16
Calculate
6
343−248+5×4−(323−6+5×2)
Multiply the numbers
343−248+5×4−(323−6+10)
Divide the terms
More Steps

Evaluate
248
Reduce the numbers
124
Calculate
24
343−24+5×4−(323−6+10)
Multiply the numbers
343−24+20−(323−6+10)
Calculate the sum or difference
More Steps

Evaluate
323−6+10
Evaluate the power
38−6+10
Add the numbers
38+4
Write all numerators above the least common denominator 3
38+1×34×3
Calculate
38+312
Add the terms
38+12
Add the terms
320
343−24+20−320
Evaluate the power
364−24+20−320
Add the numbers
364−4−320
Subtract the numbers
More Steps

Evaluate
364−320
Subtract the terms
364−20
Subtract the terms
344
344−4
Write all numerators above the least common denominator 3
344−1×34×3
Calculate
344−312
Subtract the terms
344−12
Subtract the terms
332
332
Alternative Form
1032
Alternative Form
10.6˙
Show Solution
