Question :
int _0^2(3x^2+x-1)
Evaluate the integral
8
Evaluate
∫02(3x2+x−1)dx
Evaluate the integral
∫(3x2+x−1)dx
Use the property of integral ∫f(x)±g(x)dx=∫f(x)dx±∫g(x)dx
∫3x2dx+∫xdx+∫−1dx
Evaluate the integral
More Steps

Evaluate
∫3x2dx
Use the property of integral ∫kf(x)dx=k∫f(x)dx
3×∫x2dx
Use the property of integral ∫xndx=n+1xn+1
3×2+1x2+1
Add the numbers
3×2+1x3
Add the numbers
3×3x3
Cancel out the common factor 3
1×x3
Multiply the terms
x3
x3+∫xdx+∫−1dx
Evaluate the integral
More Steps

Evaluate
∫xdx
Use the property of integral ∫xndx=n+1xn+1
1+1x1+1
Add the numbers
1+1x2
Add the numbers
2x2
x3+2x2+∫−1dx
Use the property of integral ∫kdx=kx
x3+2x2−x
Return the limits
(x3+2x2−x)02
Solution
More Steps

Substitute the values into formula
23+222−2−(03+202−0)
Calculate
23+222−2−(03+20−0)
Calculate
23+222−2−(0+20−0)
Divide the terms
23+222−2−(0+0−0)
Reduce the fraction
More Steps

Evaluate
222
Use the product rule aman=an−m to simplify the expression
22−1
Subtract the terms
21
Simplify
2
23+2−2−(0+0−0)
Removing 0 doesn't change the value,so remove it from the expression
23+2−2−0
Removing 0 doesn't change the value,so remove it from the expression
23+2−2
Evaluate the power
8+2−2
Calculate the sum or difference
8
8
Show Solution
