Question :
int _ ^ (3x^2-4x+1)
Evaluate the integral
x3−2x2+x+C,C∈R
Evaluate
∫(3x2−4x+1)dx
Use the property of integral ∫f(x)±g(x)dx=∫f(x)dx±∫g(x)dx
∫3x2dx+∫−4xdx+∫1dx
Evaluate the integral
More Steps

Evaluate
∫3x2dx
Use the property of integral ∫kf(x)dx=k∫f(x)dx
3×∫x2dx
Use the property of integral ∫xndx=n+1xn+1
3×2+1x2+1
Add the numbers
3×2+1x3
Add the numbers
3×3x3
Cancel out the common factor 3
1×x3
Multiply the terms
x3
x3+∫−4xdx+∫1dx
Evaluate the integral
More Steps

Evaluate
∫−4xdx
Use the property of integral ∫kf(x)dx=k∫f(x)dx
−4×∫xdx
Use the property of integral ∫xndx=n+1xn+1
−4×1+1x1+1
Add the numbers
−4×1+1x2
Add the numbers
−4×2x2
Cancel out the common factor 2
−2x2
x3−2x2+∫1dx
Use the property of integral ∫kdx=kx
x3−2x2+x
Solution
x3−2x2+x+C,C∈R
Show Solution
