Question :
int _ ^ frac2x(x^2+1)
Evaluate the integral
ln(x2+1)+C,C∈R
Evaluate
∫(x2+1)2xdx
Remove the parentheses
∫x2+12xdx
Rewrite the expression
∫2×x2+1xdx
Use the property of integral ∫kf(x)dx=k∫f(x)dx
2×∫x2+1xdx
Use the substitution dx=2x1dt to transform the integral
More Steps

Evaluate
t=x2
Calculate the derivative
dt=2xdx
Evaluate
dx=2x1dt
2×∫x2+1x×2x1dt
Simplify
More Steps

Multiply the terms
x2+1x×2x1
Cancel out the common factor x
x2+11×21
Multiply the terms
(x2+1)×21
Multiply the terms
More Steps

Evaluate
(x2+1)×2
Use the the distributive property to expand the expression
x2×2+1×2
Use the commutative property to reorder the terms
2x2+1×2
Any expression multiplied by 1 remains the same
2x2+2
2x2+21
2×∫2x2+21dt
Use the substitution t=x2 to transform the integral
2×∫2t+21dt
Rewrite the expression
2×∫21×t+11dt
Use the property of integral ∫kf(x)dx=k∫f(x)dx
2×21×∫t+11dt
Multiply the numbers
More Steps

Evaluate
2×21
Reduce the numbers
1×1
Simplify
1
1×∫t+11dt
Simplify
∫t+11dt
Use the property of integral ∫ax+b1dx=a1ln∣ax+b∣
ln(∣t+1∣)
Substitute back
ln(x2+1)
When the expression in absolute value bars is not negative, remove the bars
ln(x2+1)
Solution
ln(x2+1)+C,C∈R
Show Solution
