Question : int _ ^ ln (x) Evaluate the integral xln(x)−x+C,C∈R Evaluate ∫ln(x)dxPrepare for integration by parts u=ln(x)dv=dxCalculate the derivative More Steps Calculate the derivative u=ln(x)Evaluate the derivative du=(ln(x))′dxEvaluate the derivative du=x1dx du=x1dxdv=dxEvaluate the integral More Steps Evaluate the integral dv=dxEvaluate the integral ∫1dv=∫1dxEvaluate the integral v=x du=x1dxv=xSubstitute u=ln(x)、v=x、du=x1dx、dv=dx for ∫udv=uv−∫vdu ln(x)×x−∫x1×xdxCalculate xln(x)−∫1dxUse the property of integral ∫kdx=kx xln(x)−xSolution xln(x)−x+C,C∈R Show Solution