Question :
int _0^2(y^2-3y+5)
Evaluate the integral
320
Alternative Form
632
Alternative Form
6.6˙
Evaluate
∫02(y2−3y+5)dy
Evaluate the integral
∫(y2−3y+5)dy
Use the property of integral ∫f(x)±g(x)dx=∫f(x)dx±∫g(x)dx
∫y2dy+∫−3ydy+∫5dy
Evaluate the integral
More Steps

Evaluate
∫y2dy
Use the property of integral ∫xndx=n+1xn+1
2+1y2+1
Add the numbers
2+1y3
Add the numbers
3y3
3y3+∫−3ydy+∫5dy
Evaluate the integral
More Steps

Evaluate
∫−3ydy
Use the property of integral ∫kf(x)dx=k∫f(x)dx
−3×∫ydy
Use the property of integral ∫xndx=n+1xn+1
−3×1+1y1+1
Add the numbers
−3×1+1y2
Add the numbers
−3×2y2
Multiply the terms
−23y2
3y3−23y2+∫5dy
Use the property of integral ∫kdx=kx
3y3−23y2+5y
Return the limits
(3y3−23y2+5y)02
Solution
More Steps

Substitute the values into formula
323−23×22+5×2−(303−23×02+5×0)
Any expression multiplied by 0 equals 0
323−23×22+5×2−(303−23×02+0)
Calculate
323−23×22+5×2−(303−23×0+0)
Calculate
323−23×22+5×2−(30−23×0+0)
Any expression multiplied by 0 equals 0
323−23×22+5×2−(30−20+0)
Multiply the terms
More Steps

Evaluate
3×22
Evaluate the power
3×4
Multiply the numbers
12
323−212+5×2−(30−20+0)
Divide the terms
323−212+5×2−(0−20+0)
Divide the terms
323−212+5×2−(0−0+0)
Divide the terms
More Steps

Evaluate
212
Reduce the numbers
16
Calculate
6
323−6+5×2−(0−0+0)
Multiply the numbers
323−6+10−(0−0+0)
Removing 0 doesn't change the value,so remove it from the expression
323−6+10−0
Removing 0 doesn't change the value,so remove it from the expression
323−6+10
Evaluate the power
38−6+10
Add the numbers
38+4
Write all numerators above the least common denominator 3
38+1×34×3
Calculate
38+312
Add the terms
38+12
Add the terms
320
320
Alternative Form
632
Alternative Form
6.6˙
Show Solution
