Question
Simplify the expression
93e2−423b
Evaluate
e×93e−423b
Solution
More Steps

Evaluate
e×93e
Multiply the terms
More Steps

Evaluate
e×e
Multiply the terms with the same base by adding their exponents
e1+1
Add the numbers
e2
e2×93
Use the commutative property to reorder the terms
93e2
93e2−423b
Show Solution

Factor the expression
3(31e2−141b)
Evaluate
e×93e−423b
Multiply
More Steps

Evaluate
e×93e
Multiply the terms
More Steps

Evaluate
e×e
Multiply the terms with the same base by adding their exponents
e1+1
Add the numbers
e2
e2×93
Use the commutative property to reorder the terms
93e2
93e2−423b
Solution
3(31e2−141b)
Show Solution

Find the roots
b=14131e2
Alternative Form
b≈1.624544
Evaluate
e×93e−423b
To find the roots of the expression,set the expression equal to 0
e×93e−423b=0
Multiply
More Steps

Multiply the terms
e×93e
Multiply the terms
More Steps

Evaluate
e×e
Multiply the terms with the same base by adding their exponents
e1+1
Add the numbers
e2
e2×93
Use the commutative property to reorder the terms
93e2
93e2−423b=0
Move the constant to the right-hand side and change its sign
−423b=0−93e2
Removing 0 doesn't change the value,so remove it from the expression
−423b=−93e2
Change the signs on both sides of the equation
423b=93e2
Divide both sides
423423b=42393e2
Divide the numbers
b=42393e2
Solution
b=14131e2
Alternative Form
b≈1.624544
Show Solution
